Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Carol Gonsalves x
Clear All Modify Search

Six summer squash (Cucurbita pepo L.) cultivars were regenerated via somatic embryogenesis using cotyledons excised from germinated or nongerminated seeds. Genotypes included were zucchini, commercial F1 hybrids, `President', `Seneca Zucchini', `Jade'; the noncommercial inbred line `Caserta Inbred 557311'; and two yellow squash hybrids `Dixie' and `Seneca Butterbar'. Somatic embryogenesis was initiated in induction medium containing 22.62 μm 2, 4-D, and embryos were germinated in maturation medium containing 0.27 μm NAA and 0.23 μm kinetin. Plants were elongated and rooted on basal medium without hormones. All media contained carbenicillin at 500 mg·liter–1. Sixty-one percent of the `Seneca Butterbar' cotyledons produced somatic embryos when kept on induction medium for 10 weeks. Overall, 7% of the initial explants produced plantlets, and regeneration efficiency was calculated as 0.3 plantlets per initial explant. The relative production of plants from cotyledons that were kept on induction medium for different time periods were determined for `Caserta Inbred 557311' and `Seneca Zucchini'. All cotyledons produced somatic embryos after 11 to 17 weeks on induction medium. However, plantlet production was optimal with explants kept on induction medium for 13 weeks for `Seneca Zucchini' and for 15 weeks for `Caserta Inbred 557311', producing an average of 4.5 and 9.3 plants per explant, respectively, from 90% to 70% of the explants. We recovered plants from all six cultivars; thus, our regeneration protocol may be applicable to other genotypes. The high percentage of regenerants obtained indicates that the regeneration method is efficient enough to be adapted successfully to squash transformation experiments. Chemical names used: α-carboxybenzylpenicillin (carbenicillin); 2,4-dichlorophenoxyacetic acid (2,4-D); 6-furfurylaminopurine (kinetin); α-napthaleneacetic acid (NAA).

Free access

A single regeneration procedure using cotyledon explants effectively regenerated five commercially grown muskmelon cultivars. This regeneration scheme was used to facilitate gene transfers using either Agrobacterium tumefaciens (using `Burpee Hybrid' and `Hales Best Jumbo') or microprojectile bombardment (using `Topmark') methods. In both cases, the transferred genes were from the T-DNA region of the binary vector plasmid pGA482GG/cp cucumber mosaic virus-white leaf strain (CMV-WL), which contains genes that encode neomycin phosphotransferase II (NPT II), β-glucuronidase (GUS), and the CMV-WL coat protein (CP). Explants treated with pGA482GG/cpCMV-WL regenerated shoots on Murashige and Skoog medium containing 4.4 μm 6-benzylaminopurine (BA), kanamycin (Km) at 150 mg·liter-1 and carbenicillin (Cb) at 500 mg·liter-1. Our comparison of A. tumefaciens- and microprojectile-mediated gene transfer procedures shows that both methods effectively produce nearly the same percentage of transgenic plants. R0 plants were first tested for GUS or NPT II expression, then the polymerase chain reaction (PCR) and other tests were used to verify the transfer of the NPT II, GUS, and CMV-WL CP genes. This analysis showed that plants transformed by A. tumefaciens contained all three genes, although co-transferring the genes into bombarded plants was not always successful. R1 plants were challenge inoculated with CMV-FNY, a destructive strain of CMV found in New York. Resistance levels varied according to the different transformed genotypes. Somaclonal variation was observed in a significant number of R0 transgenic plants. Flow cytometry analysis of leaf tissue revealed that a significant number of transgenic plants were tetraploid or mixoploid, whereas the commercial nontransformed cultivars were diploid. In a study of young, germinated cotyledons, however, a mixture of diploid, tetraploid, and octoploid cells were found at the shoot regeneration sites.

Free access