Search Results

You are looking at 1 - 10 of 31 items for

  • Author or Editor: Carlos H. Crisosto x
Clear All Modify Search
Free access

Carlos H. Crisosto, David Garner and Gayle Crisosto

Efficacy of controlled atmosphere (CA) conditions for decay control in 'Thompson Seedless' table grapes was evaluated during the 1998-2000 seasons. During the 1998 season, early (16.5% soluble solids concentration = SSC) and late harvested (19% SSC) grapes were exposed to 5%, 10%, 15%, 20%, or 25% CO2 combined with 3%, 6%, and 12% O2. In 1999 and 2000, 10% or 15% CO2 combined with 3%, 6%, or 12% O2 were used. In all trials, fruit were initially SO2 fumigated and air-stored grapes were used as controls. Storage atmospheres did not affect SSC, titratable acidity (TA), or sugar-to-acid ratio (SSC: TA). The main storage limitations for early harvested 'Thompson Seedless' table grapes were “off flavor” and rachis and berry browning development, which resulted from exposure to >10% CO2. However, ≥15% CO2 was needed to control total decay and nesting development independent of O2 concentrations. High carbon dioxide atmospheres (15% to 25%) were more effective in decay control without detrimental effects on quality when late harvested grapes were used. The combination of 15% CO2 with 3%, 6%, or 12% O2 is suggested for up to 3 months storage only for late harvested 'Thompson Seedless' table grapes; it should not be used for early harvested grapes.

Full access

David Garner, Carlos H. Crisosto and Eric Otieza

`Snow King' peaches (Prunus persica) harvested at commercial maturity were subjected to different carbon dioxide (CO2) and oxygen (O2) atmosphere combinations for a 2-week simulated transportation [0 °C (32 °F)] period after 1 week of cold storage in air (0 °C). In 1998, air or 5%, 10%, 15%, or 20% CO2 combined with 3% or 6% O2 were used during shipment. The trial was repeated in 1999, but for this year half of the fruit were treated with a 50 mg·L-1 (ppm) aminoethoxyvinylglycine (AVG) postharvest dip before storage and simulated shipment. In addition, O2 levels during simulated shipment were reduced to 1.5% and 3%. At harvest and after the 2-week simulated shipment, fruit flesh firmness, soluble solids concentration (SSC), titratable acidity (TA), and chilling injury (CI) were evaluated. For both years, there were no significant differences in quality attributes among the different treatments after the simulated shipment period. SSC and TA did not change during 5 days postshipment ripening at 20 °C (68 °F). In 1998 all treatments softened rapidly during the postshipment ripening at 20 °C, and were ready to eat [13 N (1 N = 0.225 lb force)] after 3 days. In 1999, both the high CO2 atmospheres during shipment and the AVG postharvest dip slowed the rate of softening during subsequent ripening at 20 °C. With respect to fruit softening, there was significant interaction between storage atmosphere and AVG treatment. AVG-treated fruit shipped under a 20% CO2 + 3% O2 atmosphere did not soften to the transfer point (firmness = 27 N) within our 5-day ripening period, while fruit not treated with AVG and shipped under the same atmosphere softened to the transfer point in 3 days. Control fruit (no AVG + air shipment) softened to the transfer point in 2 days. Our previous work found that when white flesh peaches soften to less than 27 N firmness they become very susceptible to impact bruise injury during retail distribution. We call this critical level of fruit flesh firmness the transfer point. Symptoms of CI, low O2, or high CO2 injury were not observed in any treatment in either year.

Free access

Guiwen W. Cheng and Carlos H. Crisosto

The relationship of phenolic composition and polyphenoloxidase activity (PPO, E.C. 1.14.18.1) to browning potential (BP) was studied in buffer extracts of peach [Prunus persica L. Batsch) and nectarine [P. persica var. nectarine (L.) Batsch] fruit skin. The BP varied among cultivars with `Flavorcrest' having the highest value and `Maycrest' the lowest. On average, over 83 % of the browning measured at the end of the S-hour incubation occurred during the first hour. The total soluble phenolics (TSP), the total anthocyanin (TA), and glutathione content (GLU) varied among cultivars, but were not significantly correlated to the BP. Of the phenolics determined by HPLC, only chlorogenic acid had a significant positive correlation and epicatechin a significant negative correlation with BP by the first hour of incubation. The PPO activity, ranging from 4 to 11 optical density units per gram dry weight per minute among peaches and nectarines, was not significantly correlated with BP. However, no browning was detected if the buffer extract was previously boiled. These results indicated that browning in the buffer extracts of peach and nectarine skin tissue depends on the presence of PPO activity and chlorogenic acid, which are major contributors to enzymatic browning.

Free access

Guiwen W. Cheng and Carlos H. Crisosto

The formation of metallo-pigmentation and copigmentation as potential mechanisms of inking formation was investigated in peach and nectarine skin tissues. Cyanidin-3-glucoside, the most abundant anthocyanin in peaches and nectarines, formed very purple ferric complexes with an anthocyanin/iron molar ratio of two. Greenish metallo complexes between ferric ion and chlorogenic acid, caffeic acid, catechin, or epicatechin formed with an phenolic/iron molar ratio of one. The lack of copigmentation pointed out the importance to focus research on the metallo-phenolics reaction. High intensity of dark color formation was developed with cyanidin-3-glucoside, followed by caffeic acid, chlorogenic acid, catechin, and epicatechin on an equal molar basis. Citric acid acted as a strong iron chelator to prevent and reverse the formation of ferric cyanidin-3-glucoside complexes. The variety of dark and light colored spots observed on the surface of peaches and nectarines is explained by the formation of metallo-pigment complexes.

Free access

Guiwen W. Cheng and Carlos H. Crisosto

Dark skin discoloration development on peach and nectarine cultivars was investigated in response to exogenous pH and metallic ions. The influence of skin abrasion and washing in combination with exogenous contaminants was studied in a factorial design experiment by using skin discs. Only abraded skin discs with and without washing developed discoloration after being exposed to high pH and different metallic ion concentrations. Among the metallic ion contaminants studied (Fe, Al, Cu, Sn, Zn, and Na), iron was the most effective in causing dark skin discoloration at physiological pH (3.5). Iron concentrations ≥10 ppm induced dark discoloration on abraded fruit skin. Dark discoloration development produced by exposing the skin tissue to pH levels >6 was reversible, whereas the dark discoloration induced by iron and aluminum remained stable.

Free access

Carlos H. Crisosto, Vanessa Bremer, Louise Ferguson and Gayle M. Crisosto

The effect of two fruit maturity stages on the quality attributes of four fresh fig cultivars was examined, including consumer acceptance and antioxidant capacity. Fig quality attributes such as weight, soluble solids concentration (SSC), titratable acidity (TA), SSC:TA, firmness, antioxidant capacity, and consumer acceptance varied by cultivar. Fig cultivars harvested at the advanced maturity stage (“tree ripe”) had lower TA and firmness but higher weight, SSC, and SSC:TA than figs harvested at “commercial maturity.” Fig maturity did not affect antioxidant capacity, but tree ripe figs had higher consumer acceptance than commercial maturity figs. SSC was more highly correlated with consumer acceptance than TA or SSC:TA, but other factors may also be important in controlling this relationship. Cultivars with high SSC and firmness, at a maturity stage high enough to tolerate harvesting and postharvest handling, should be selected to develop the fresh fig industry. Because fig firmness is a concern, changes to packaging should be evaluated to protect the flavor of advanced maturity figs during postharvest handling.

Free access

Carlos H. Crisosto, Gayle M. Crisosto, Gemma Echeverria and Jaume Puy

Cultivar segregation according to their organoleptic perception was attempted by using trained panel data evaluated by principal component analysis in four sources of 24 peach and 27 nectarine cultivars as a part of our program to develop minimum quality indexes. Source significantly affected cultivar ripe soluble solids concentration (RSSC) and ripe titratable acidity (RTA), but it did not significantly affect sensory perception of flavor, sourness and aroma by the trained panel. On two out of 51 cultivars tested, source played a role on sweetness perception. In all of these cases, when source fell out of the proposed cultivar organoleptic group it could be explained by fruit being harvested outside the commercial physiological maturity (immature or overmature). The perception of the four sensory attributes was reduced to three principal components that explain 92% for peach and 94% for nectarine of the variation in the sensory characteristics of the cultivars tested. Season did not affect significantly the classification of three cultivars that were evaluated during these two seasons. By plotting organoleptic characteristics in PC1 and PC2 (∼76%), cultivars were segregated into groups (balanced, robust, sweet, peach or nectarine aroma, and/or peach or nectarine flavor) with similar sensory attributes; nectarines were classified into five groups and peaches into four groups. Based on this information, we recommend that cultivars should be clustered in organoleptic groups and a development of a minimum quality index should be attempted within each organoleptic group rather than proposing a generic minimum quality index based on RSSC. This organoleptic cultivar classification will help to match ethnic preferences and enhance the current promotion and marketing programs.

Full access

Carlos H. Crisosto, Lluís Palou, David Garner and Donald A. Armson

Reduced doses of sulfur dioxide (SO2) were evaluated for the fumigation of marine containers with respect to the concentration × time (CT) product and gas penetration. Two commercial export containers were loaded at 32 °F (0 °C) with 20 metric pallets [40 × 48 inches (102.5 × 123.1 cm)] comprised of 72 expanded polystyrene foam boxes (12 tiers, 6 boxes/tier) of table grapes (Vitis vinifera) and fumigated with 1.0 and 0.5 lb (0.454 and 0.227 kg) SO2, respectively. A third marine container was loaded with 20 metric pallets comprised of 84 plastic boxes of table grapes (14 tiers, 6 boxes/tier) and fumigated with 0.25 lb (0.113 kg) SO2. The boxes contained 16 lb (7.3 kg) of table grapes distributed in nine polyethylene cluster bagsenclosed in a perforated polyethylene box liner. Fumigations were performed through the bottom seal of the rear door from pre-weighed compressed SO2 cylinders. CT product was calculated after taking samples of the atmosphere in the container every 5 to 10 min and measuring the ambient SO2 concentration with a gas sampling pump and colorimetric dosimeter tubes. Pallet and box penetration of the gas was assessed by placing passive colorimetric SO2 dosimeters inside the cluster bags in boxes located in both the third and ninth center boxes from the top of pallets located in the front, center, and rear of the load. Fumigations with 1.0, 0.5, and 0.25 lb SO2, with calculated CT products at 32 °F of 925, 360, and 40 ppm-h (μL·L-1·h-1) respectively, were found to provide excessive, adequate, and insufficient SO2 doses.

Full access

Celia M. Cantín, Carlos H. Crisosto and Kevin R. Day

The influence of modified atmosphere packaging (MAP) on quality attributes and shelf life performance of ‘Friar’ plums (Prunus salicina) was studied. Plums were stored at 0 °C and 85% relative humidity for a 60-day period in five different box liners (LifeSpan L316, FF-602, FF-504, 2.0% vented area perforated, and Hefty liner) and untreated (control). Flesh firmness, soluble solids concentration, titratable acidity, and pH were unaffected by the box liners. Fruit skin color changes were repressed on plums packed in box liners that modified gas levels and weight loss was reduced by the use of any of the box liners. Plums packed without box liners (bulk-packed) had ≈6% weight loss. High carbon dioxide (CO2) and low oxygen (O2) levels were measured in boxes with MAP box liners (LifeSpan L316, FF-602, and FF-504). Percentage of healthy fruit was unaffected by any of the treatments during the ripening period (shelf life) after 45 days of cold storage. However, after 60 days of cold storage, fruit from the MAP box liners with higher CO2 and lower O2 levels had a higher incidence of chilling injury (CI) symptoms, evident as flesh translucency, gel breakdown, and “off flavor” than fruit from the other treatments. Overall, results indicate that the use of MAP box liners is recommended to improve market life of ‘Friar’ plums up to 45 days cold storage. However, the use of box liners without gas control capability may lead to CI symptoms in fruit cold-stored for longer periods.

Free access

Carlos H. Crisosto, David Garner, Jim Doyle and Kevin R. Day

Respiration rate and bruising incidence were assessed in new cherry (Prunus avium L.) cultivars adapted to high temperatures. `Bing', `Brooks', `Tulare', and `King' respiration rates were evaluated at 0,5,10, and 20C, and bruising susceptibilities at 0, 10, 20, and 30C. `Bing' was the least susceptible to bruising and had the lowest respiration rate at all temperatures. Respiration rate increased with temperature in all cultivars. Impact bruising damage was greatest in all cultivars when fruit flesh was below 10C. Vibration damage was not influenced by fruit temperature. Our results suggest that the cherry cultivars assessed should be handled at temperatures between 10 and 20C during packing to minimize bruising damage. Due to increased respiration rates at higher temperatures, however, fruit should be cooled to 0C within 4 to 6 hours after harvest.