Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Carlos E. Bográn x
Clear All Modify Search
Free access

Carlos E. Bogran, H. Brent Pemberton, Thomas Isakeit and William R. Roberson

A strain of Rhizoctonia solani was isolated from wax begonia (Begonia Semperflorens-Cultorum hybrids) plants in garden evaluation trial plots. This strain was then used to test for disease tolerance in a controlled environment experiment. Inoculated plants of 12 cultivars were evaluated for disease development and the area under the disease progress curve was calculated. No plants were disease free, but `Stara White', `Stara Pink', and three colors from the Party series exhibited greater disease tolerance than `Ambassador Coral', `Ambassador Deep Rose', and two experimental varieties. `Stara White', `Party Pink Bronze Leaf', and `Party White Bronze Leaf' were more tolerant than `Cocktail Vodka', an industry standard. When the same cultivars were grown in field garden evaluation plots, `Cocktail Vodka', four colors from the Stara series, and three colors from the Party series exhibited superior garden performance and flowering ratings to `Ambassador Coral' and an experimental `Rose' cultivar. For most cultivars, garden performance was correlated to disease tolerance. However, `Cocktail Vodka' exhibited good garden performance despite having a high level of disease in the inoculation experiment, indicating that other factors may be involved in determining garden performance.

Free access

James D. Spiers, Fred T. Davies Jr., Chuanjiu He, Carlos E. Bográn, Kevin M. Heinz, Terri W. Starman and Amanda Chau

This study evaluated the influence of insecticides on gas exchange, chlorophyll content, vegetative and floral development, and plant quality of gerbera (Gerbera jamesonii Bolus `Festival Salmon'). Insecticides from five chemical classes were applied weekly at 1× or 4× their respective recommended concentration. The insecticides used were abamectin (Avid), acephate (Orthene), bifenthrin (Talstar), clarified hydrophobic extract of neem oil (Triact), and spinosad (Conserve). Photosynthesis and stomatal conductance were reduced in plants treated with neem oil. Plants treated with neem oil flowered later—and at 4× the recommended label concentration had reduced growth, based on lower vegetative dry mass (DM) and total aboveground DM, reduced leaf area, thicker leaves (lower specific leaf area), higher chlorophyll content (basal leaves), and reduced flower production. Plants treated with acephate at 4× the recommended label concentration were of the lowest quality due to extensive phytotoxicity (leaf chlorosis). Plants treated with 1× or 4× abamectin or spinosad were of the highest quality due to no phytotoxicity and no thrips damage (thrips naturally migrated into the greenhouse). The control plants and plants treated with 1× bifenthrin had reduced quality because of thrips feeding damage; however gas exchange was not negatively affected.