Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Carl E. Bell x
Clear All Modify Search
Free access

Carl E. Bell, Cheryl A. Wilen and Alison E. Stanton

Full access

Carl E. Bell, Brent E. Boutwell, Edmund J. Ogbuchiekwe and Milton E. McGiffen Jr.

Application of linuron was compared with hand-weeding and a nontreated control (= control) for weed control in carrots. Linuron, applied pre- or postemergent, was slightly less effective than the 100% weed control obtained by hand-weeding. Carrot yields were similar for all treatments, and were at least six times as great as in the control. In 1996, linuron treatments returned net profits ranging from $980 to $1887 per ha, compared to $740 for hand-weeding and - $2975 for the control. In 1997, return on linuron treatments was greater, ranging from $5326 to $6426, compared with $2852 for hand-weeding. Marginal rates of return ranged from 21% to 86% in 1996. In 1997, rates of return for every dollar invested in linuron were over 59%. Chemical name used: N′-(3,4-dichlorophenyl)-N-methoxy-N-methylurea (linuron).

Free access

Carl E. Bell, Brent E. Boutwell, Edmund J. Ogbuchiekwe and Milton E. McGiffen Jr.

Application of linuron was compared with hand-weeding and a nontreated control (= control) for weed control in carrots. Linuron, applied pre- or postemergent, was slightly less effective than the 100% weed control obtained by hand-weeding. Carrot yields were similar for all treatments, and were at least six times as great as in the control. In 1996, linuron treatments returned net profits ranging from $980 to $1887 per ha, compared to $740 for hand-weeding and -$2975 for the control. In 1997, return on linuron treatments was greater, ranging from $5326 to $6426, compared with $2852 for hand-weeding. Marginal rates of return ranged from 21% to 86% in 1996. In 1997, rates of return for every dollar invested in linuron were over 59%. Chemical name used: N′-(3,4-dichlorophenyl)-N-methoxy-N-methylurea (linuron).

Free access

Milton E. McGiffen Jr., Steven A. Fennimore, W. Thomas Lanini and Carl E. Bell

The Food Quality Protection Act may result in the withdrawal from use of many herbicides in the “minor” crops: fruits, vegetables, herbs, flowers, and ornamentals. An obvious mitigation strategy is to test and register newer, low-rate herbicides that are currently used only in large-acreage field crops. The newer herbicides have low mammalian toxicity, few off-target effects, and are often used at rates of less than 0.1 kg/ha. Many of the older herbicides are applied at rates of several kg/ha and have off-target effects that can make their use problematic. Low-rate herbicides could replace the older chemicals commonly used in horticultural crops. We have tested several promising low-rate herbicides: carfentrazone, cloransulam, dimethenamid, halosulfuron, rimsulfuron, and sulfentrazone. Broccoli, cantaloupe, carrot, lettuce, onion, spinach, and processing tomato varieties were screened for tolerance to low-rate herbicides at four locations in California that included desert, inland, and coastal environments. All of the crops tested had tolerance for one or more of the low-rate herbicides. Data on similar tests for other horticultural crops will also be presented. The potential for registering these herbicides in vegetables and other horticultural crops varies with the crop and the pesticide's manufacturer. Pesticides that may soon face removal from widespread use will be reviewed. Herbicides and other potential alternatives to currently registered herbicides will be examined to determine possible practical alternatives for specific crops and weeds.