Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Cankui Zhang x
Clear All Modify Search
Restricted access

Zhongjie Ji, James J. Camberato, Cankui Zhang and Yiwei Jiang

Plant growth regulators (PGRs) can mediate plant response to salinity stress. Perennial ryegrass (Lolium perenne) cultivars of BrightStar SLT, Catalina, Inspire, and SR4660ST were exposed to 0, 100, or 200 mm NaCl for 14 d. 6-benzyladenine (6-BA, 10 µm), γ-aminobutyric acid (GABA, 500 µm), nitric oxide (NO, 200 µm), and H2O were applied to the foliage every day for 3 days before stress and then every 2 days during salinity stress. Averaged across the four cultivars, a foliar spray of NO increased leaf fresh weight (FW) and dry weight (DW) at 0 mm NaCl, whereas application of 6-BA increased DW and GABA reduced Na+ concentration at 100 mm NaCl, compared with H2O application. Plants treated with 6-BA, GABA, and NO had less chlorotic and necrotic leaf tissue than plants treated with H2O at 200 mm NaCl. Spray of 6-BA and NO increased FW and DW, but application of all three PGRs maintained higher leaf photochemical efficiency and lower leaf Na+ concentration compared with H2O treatment at 200 mm NaCl. Across salinity and PGR treatments, ‘Catalina’ exhibited higher plant height than the ‘Inspire’ and SR4660ST, and SR4660ST had relatively higher Na+ concentration than ‘Catalina’ but not ‘BrightStar SLT’ and ‘Inspire’. The results demonstrate that 6-BA, GABA, and NO ameliorated salinity tolerance of perennial ryegrass by improving growth and photochemical efficiency or reducing Na+ accumulation.

Free access

Ping Lang, Can-kui Zhang, Fenny Dane, Shasha Meng, Robert Ebel and Narendra Singh

Commercial citrus species, some of the most important fruit crops worldwide, are sensitive to sub-freezing temperatures. Poncirus trifoliata, a species closely related to commercial citrus and tolerant to –30 °C, has been used in breeding programs or as a rootstock to impart greater freeze tolerance. Gene expression of P. trifoliata and C. unshiu (Satsuma mandarin) were investigated and compared under slow and fast cold-acclimation regimes. The mRNA differential display-polymerase chain reaction (DDRT-PCR) and cDNA-AFLP, coupled with quantitative relative RT-PCR or real-time PCR were used. Many unique gene fragments were isolated and found to be up- or down–regulated as a result of exposure to low temperature. The up-regulated fragments in Poncirus show high similarities to genes involved in osmotic regulation (betaine/proline transporter, water channel protein, and nitrate transporter), oxidative stress (aldoketo reductase, early light induced protein), and protein interaction (tetratricopeptide-repeat protein, F-box protein, and ribosomal protein L15). In C. unshiu the up-regulated genes show high similarities to genes involved in transcription (zinc finger and GTP-binding protein-related), signal transduction (14–3–3 protein and extension-like protein), protein synthesis and amino acid translocation (permease and ribosomal proteins), chromosome folding (chromosome condensation, structural maintenance of chromosomes-like protein), and carbohydrate metabolism (glycosyl transferase). Several genes involved in photosynthesis, defense and cell wall metabolism were down regulated. Characterization of cold responsive genes will be discussed.