Search Results
You are looking at 1 - 4 of 4 items for
- Author or Editor: Cameron P. Peace x
The Y locus of peach [Prunus persica (L.) Batsch] controls whether a tree will produce fruit with white or yellow flesh. Flesh color has implications for consumer acceptance and nutritional quality, and improved cultivars of both flesh types are actively sought. This paper focuses on evidence that the flesh color locus also controls senescent leaf color (easily observed in the fall) and hypanthium color. In two progeny populations totaling 115 progeny plus their parents, the three traits co-segregated completely. Trees carrying the dominant allele for white flesh had yellow senescent leaves and yellow hypanthia, while homozygous recessive yellow-fleshed types exhibited orange senescent leaves and orange hypanthia. Senescent leaf color was also measured quantitatively, with major colorimetric differences observed between white-fleshed and yellow-fleshed progeny. Senescent leaf hue angle and reflected light wavelengths of 500 to 560 nm were the parameters most affected by the flesh color locus. Results were verified with 10 white-fleshed and 10 yellow-fleshed cultivars. The findings show that the Y locus in peach controls the type and concentration of carotenoids in multiple organs, including fruit, leaves, and flowers. The ability to discriminate between white and yellow flesh color using a simple visual method, applicable in plants not yet at reproductive maturity, is valuable to breeders wanting to save time, growing space, and money.
Candidate gene (CG) analysis can be an efficient approach for identifying genes controlling important traits in fruit production. Three chronological steps have been described for determining candidate genes for a trait—proposing, screening, and validating—and we have applied these to the problem of internal breakdown of peach and nectarine. Internal breakdown (IB), also known as chilling injury, is the collective term for various disorders that occur during prolonged cold storage and/or after subsequent ripening of stone fruit. Symptoms include mealiness, browning, and bleeding. Candidate genes for IB symptoms were proposed based on knowledge of the biochemical or physiological pathways leading to phenotypic expression of the traits. Gene sequences for proposed CGs were obtained primarily from the Genome Database for Rosaceae. Screening the CGs involved identifying polymorphism within a progeny population, relying mainly on simple PCR tests. Several polymorphic CGs were located on a peach linkage map and compared with phenotypic variation for IB susceptibility. A major QTL for mealiness coincided with the Freestone-Melting flesh locus, which itself is likely to be controlled by a CG encoding endopolygalacturonase, an enzyme involved in pectin degradation. Further gene sequences positioned on the consensus linkage map of Prunus by other researchers were co-located with QTLs for IB traits. Validation of the role of identified CGs will require detailed physiological or transgenic studies.