Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: C.Y. Yu x
Clear All Modify Search

Continuous monitoring of hydraulic/hydrologic data for managing water for horticultural crops has been a challenge due to factors such as data loss, intensive resource requirements, and complicated setup and operation. The use of state-of-the-art wireless spread spectrum communication technology and wireless data acquisition and control (WDAC) systems for agricultural water management is discussed in this paper. The WDAC technology was applied to a research project where lysimeters were used for water quantity and quality studies for vegetables. Two types of WDAC networks, master–slave and peer-to-peer WDAC networks, are discussed. The WDAC system linked the wireless dataloggers to a network to make real-time data available over the Internet. The use of WDAC made it possible to collect real-time data and control the experiment (e.g., frequency of data collection) remotely through the Internet. The WDAC system for the lysimeter study was compared to a commonly used manual system with regard to potential instrument damage, data loss, ease of data collection and analyses, and total cost of monitoring. The advantages of the WDAC include: reduced equipment losses from natural disasters (e.g., lightning), improved equipment maintenance, reduced data loss from faulty equipment, higher project personnel efficiency, and real-time involvement by a dispersed team. The total cost of the WDAC system ($65,750) was about half that of the manual system ($130,380). The WDAC system was found to be an effective tool for agricultural water management projects.

Full access


Ethylene production of tissues excised from root, stem, leaf, inflorescence, and fruit of 16 plant species greatly increased following the application of 1-aminocyclopropane-1 carboxylic acid (ACC), an intermediate in the conversion of methionine to ethylene. Treatment with 1 mM ACC invariably increased the rate of ethylene production 10 to 1000 times over controls, whereas methionine at the same concentration was ineffective. Treatment with 0.1 mM ACC consistently increased ethylene production in all of the tissues tested, although only a few tissues responded to 0.01 mM.

Open Access