Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: C.T. Chao x
Clear All Modify Search
Authors: , , , and

We used amplified fragment length polymorphism (AFLP) markers to analyze 14 fruiting mei cultivars from China and Japan. The levels of polymorphism and genetic relationship among cultivars were studied using two types of AFLP primer combinations [EcoR I + Mse I (E+M) and EcoR I + Taq I (E+T)] and the combined data from both types of primer combinations (E+M+T). The polymorphism among the cultivars was 57.92% based on E+M primers and 63.04% based on E+T primers. All three dendrograms generated by the three sets of data showed similar relationships among the fruiting mei cultivars. The corresponding main clusters contained the same cultivars and the subgroups correlated closely with the known geographic origins of the cultivars.

Free access

Performance of `Kerman' pistachio (Pistacia vera L.) trees on three rootstocks (P. atlantica Desf., P. integerrima Stewart and `UCB-1', a P. atlantica × P. integerrima hybrid) was evaluated with 2-year-old trees grown in sand-tank lysimeters under combined SO4 2- and Cl- salinity and boron (B) stress for 6 months. Four salinity treatments were imposed by irrigating the plants with water at electrical conductivity (ECiw) of 3.5, 8.7,12, or 16 dS·m-1 each containing B at 10 mg·L-1. Growth of `Kerman' was evaluated based on increase in total leaf area, increase in trunk diameter, and total above-ground biomass production. All growth parameters decreased as salinity increased, but were not significant until ECiw exceeded 12 dS·m-1. However, growth of `Kerman' on P. atlantica and `UCB-1' was considerably better than on P. integerrima at 16 dS·m-1. The onset and severity of foliar injury differed among scions and treatments and was attributed primarily to B toxicity, rather than the effects of salinity. Concentrations of B in injured leaf tissue ranged from 1000 to 2500 mg·kg-1. Leaf injury decreased with increasing salinity, although leaf B was not significantly reduced suggesting an internal synergistic interaction between B and other mineral nutrients. However for P. vera on P. integerrima, the highest level of salinity produced the greatest injury, possibly as a combination of B plus Cl- and/or Na+ toxicity. Leaf transpiration, stomatal conductance, and chlorophyll concentration of P. vera, determined by steady-state porometry, were also reduced to a greater degree by combined salinity and B when budded on P. integerrima than on the other two rootstocks.

Free access