Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: C.S. Brown x
  • Refine by Access: All x
Clear All Modify Search
Free access

Andrew C. Schuerger and Christopher S. Brown

Plants were grown under light-emitting diode (LED) arrays with various spectra to determine the effects of light quality on the development of diseases caused by tomato mosaic virus (ToMV) on pepper (Capsicum annuum L.), powdery mildew [Sphaerotheca fuliginea (Schlectend:Fr.) Pollaci] on cucumber (Cucumis sativus L.), and bacterial wilt (Pseudomonas solanacearum Smith) on tomato (Lycopersicon esculentum Mill.). One LED (660) array supplied 99% red light at 660 nm (25 nm bandwidth at half-peak height) and 1% far-red light between 700 to 800 nm. A second LED (660/735) array supplied 83% red light at 660 nm and 17% far-red light at 735 nm (25 nm bandwidth at half-peak height). A third LED (660/BF) array supplied 98% red light at 660 nm, 1% blue light (BF) between 350 to 550 nm, and 1% far-red light between 700 to 800 nm. Control plants were grown under broad-spectrum metal halide (MH) lamps. Plants were grown at a mean photon flux (300 to 800 nm) of 330 μmol·m-2·s-1 under a 12-h day/night photoperiod. Spectral quality affected each pathosystem differently. In the ToMV/pepper pathosystem, disease symptoms developed slower and were less severe in plants grown under light sources that contained blue and UV-A wavelengths (MH and 660/BF treatments) compared to plants grown under light sources that lacked blue and UV-A wavelengths (660 and 660/735 LED arrays). In contrast, the number of colonies per leaf was highest and the mean colony diameters of S. fuliginea on cucumber plants were largest on leaves grown under the MH lamp (highest amount of blue and UV-A light) and least on leaves grown under the 660 LED array (no blue or UV-A light). The addition of far-red irradiation to the primary light source in the 660/735 LED array increased the colony counts per leaf in the S. fuliginea/ cucumber pathosystem compared to the red-only (660) LED array. In the P. solanacearum/ tomato pathosystem, disease symptoms were less severe in plants grown under the 660 LED array, but the effects of spectral quality on disease development when other wavelengths were included in the light source (MH-, 660/BF-, and 660/735-grown plants) were equivocal. These results demonstrate that spectral quality may be useful as a component of an integrated pest management program for future space-based controlled ecological life support systems.

Free access

N.C. Yorio, M. Sanwo, and C.S. Brown

Light-emitting diodes (LEDs) are a potential light source for growing plants in space flight systems because of their superior safety and reliability, small mass and volume, electrical efficiency, and longevity. To determine the influence of narrow-spectrum LEDs on plant growth and metabolism, wheat (Triticum aestivum L. `Superdwarf') plants were grown under red LEDs (peak emission 660 nm) and compared to plants grown under daylight fluorescent, red LEDs + 1% blue fluorescent light (BL), and red LEDs + 10% BL. Plants were taller, had longer flag leaves, and delayed seed development when grown under red LEDs or red LEDs + 1% BL compared to those grown with 10% BL or under daylight fluorescent. Viable seeds (290% germination) were produced in all plants regardless of the light treatment. Total dry matter (DM), head DM, and seed DM were similar in the plants grown under the four light regimes, and there were no differences in the starch content of the seeds. Starch levels were 4-times greater and sucrose levels were 2.5-times greater in leaves of plants grown under the red LEDs compared to daylight fluorescent. Daylight fluorescent leaves showed a 1.8-fold increase in sucrose phosphate synthase (SPS) activity, a regulatory enzyme of sucrose synthesis. These results indicate that wheat can be grown successfully under red LEDs, but there are differences in carbohydrate concentration and metabolism in photosynthetic tissue.

Free access

Christopher S. Brown, Andrew C. Schuerger, and John C. Sager

Light-emitting diodes (LEDs) are a potential irradiation source for intensive plant culture systems and photobiological research. They have small size, low mass, a long functional life, and narrow spectral output. In this study, we measured the growth and dry matter partitioning of `Hungarian Wax' pepper (Capsicum annum L.) plants grown under red LEDs compared with similar plants grown under red LEDs with supplemental blue or far-red radiation or under broad spectrum metal halide (MH) lamps. Additionally, we describe the thermal and spectra1 characteristics of these sources. The LEDs used in this study had a narrow bandwidth at half peak height (25 nm) and a focused maximum spectral output at 660 nm for the red and 735 nm for the far-red. Near infrared radiation (800 to 3000 nm) was below detection and thermal infrared radiation (3000 to 50,000 nm) was lower in the LEDs compared to the MH source. Although the red to far-red ratio varied considerably, the calculated phytochrome photostationary state (φ) was only slightly different between the radiation sources. Plant biomass was reduced when peppers were grown under red LEDs in the absence of blue wavelengths compared to plants grown under supplemental blue fluorescent lamps or MH lamps. The addition of far-red radiation resulted in taller plants with greater stem mass than red LEDs alone. There were fewer leaves under red or red plus far-red radiation than with lamps producing blue wavelengths. These results indicate that red LEDs may be suitable, in proper combination with other wavelengths of light, for the culture of plants in tightly controlled environments such as space-based plant culture systems.

Free access

S. Jorge, M.C. Pedroso, D.B. Neale, and G. Brown

Random amplified polymorphic DNA (RAPD) analysis was used to estimate genetic similarities between Portuguese Camelliasinensis (L.) O. Kuntze (tea plant) accessions and those obtained from the germplasm collections from the Tea Research Foundation of Kenya and from the National Research Institute of Vegetables, Ornamental Plants, and Tea of Japan. The accessions studied are taxonomically classified as C. sinensis, var. sinensis, var. assamica, or ssp. lasiocalyx. A set of 118 ten-base arbitrary primers was tested, of which 25 produced informative, reproducible, and polymorphic banding patterns. These primers were used to amplify DNA from 71 tea plant accessions and produced a total of 282 bands, of which 195 were polymorphic. The phenotypic frequencies were calculated using Shannon's Index and employed in estimating genetic diversity within tea plant populations. Our study demonstrates that tea plant populations, including the Portuguese tea plants, show considerable genetic variability. From the UPGMA cluster analysis based on a matrix using the Jaccard coefficient, it was possible to distinguish the Portuguese tea plants from the remaining accessions. The RAPD markers discriminated the three C. sinensis varieties. Moreover, within each variety cluster, subclusters formed according to geographic distribution. The RAPD analysis also separated the commercially cultivated tea plants from the Taiwanese wild tea plants. The present results show that RAPD analysis constitutes a good method to estimate genetic diversity within C. sinensis, and to differentiate C. sinensis accessions according to taxonomic variety and geographical distribution.

Free access

R.J. Schnell, C.T. Olano, J.S. Brown, A.W. Meerow, C. Cervantes-Martinez, C. Nagai, and J.C. Motamayor

Commercial production of cacao in Hawaii is increasing, and this trend is expected to continue over the next several years. The increased acreages are being planted with seedlings from introduced and uncharacterized cacao populations from at least three initial introductions of cacao into the islands. Productive seedlings have been selected from a planting at Waialua, Oahu. The parents of these selections were believed to be the population at the Hawaii Agriculture Research Center (HARC) at Kunia; however, potential parental populations also exist at Univ. of Hawaii research stations at Waimanalo and Malama Ki. Using microsatellite markers, we analyzed the potential parental populations to identify the parents and determine the genetic background for 99 productive and 50 unproductive seedlings from the Waialua site. Based on 19 polymorphic microsatellite loci the parental population was identified as trees from Waimanalo and not trees from Malama Ki or Kunia. The Kunia and Malama Ki populations were very similar with low allelic diversity (A = 1.92) and low unbiased gene diversity (Hnb) of 0.311 and 0.329, respectively, and were determined to be Trinitario in type. The Waimanalo, productive seedling, and unproductive seedling populations had much higher levels of genetic diversity with Hnb of 0.699, 0.686, and 0.686, respectively, and were determined to be upper Amazon Forastero hybridized with Trinitario in type. An additional 46 microsatellite markers were amplified and analyzed in the Waimanalo parents, productive, and unproductive seedlings for a total of 65 loci. Seventeen loci contained alleles that were significantly associated with productive seedlings as determined by Armitage's trend test. Of these, 13 loci (76.4%) co-located with previously reported quantitative trait loci for productivity traits. These markers may prove useful for marker assisted selection and demonstrate the potential of association genetic studies in perennial tree crops such as cacao.

Free access

T.W. Tibbitts, J.G. Croxdale, C.S. Brown, and R.M. Wheeler

Leaf cuttings from 6-week-old potato plants were planted into the Astroculture flight unit for the STS-73 shuttle flight in Oct. 1995. Tubers developed in the axils of the five leaf cuttings during the 16-days in microgravity. The flight unit had a closed growth chamber maintained at 22°C, 82% relative humidity, 150 μmol·m–2·s–1 photosynthetic photon flux, and with carbon dioxide controlled during the light period to ≈400 μmol·mol–1 and exceeding 4000 μmol·mol–1 during the dark period. A controlled delivery system using a porous tube system in arcillite medium provided water to the cuttings. A camera mounted in the top of the chamber provided video images of the plants at 2-day intervals. The cuttings maintained good vitality for the first 12 days of the flight followed by senescence of the leaves. Tubers 1.5 cm in diameter and weighing 1.7 g were produced. The shape and size of the tubers, the internal cell arrangement, and the size range of the starch grains, were similar on cuttings developed in a control experiment on the ground. Also the concentrations of starch, sucrose, fructose, glucose, and total soluble protein in the cuttings from space were similar to the cuttings developed on the ground. The challenges in scheduling experiments in a space flight and in conducting comparison control experiments on the ground are discussed. Environment control variations associated with cabin pressure changes, venting requirements, and air sampling are reviewed.

Free access

R.J. Schnell, J.S. Brown, C.T. Olano, A.W. Meerow, R.J. Campbell, and D.N. Kuhn

Mango (Mangifera indica L.) germplasm can be classified by origin with the primary groups being cultivars selected from the centers of diversity for the species, India and Southeast Asia, and those selected in Florida and other tropical and subtropical locations. Accessions have also been classified by horticultural type: cultivars that produce monoembryonic seed vs. cultivars that produce polyembryonic seed. In this study we used 25 microsatellite loci to estimate genetic diversity among 203 unique mangos (M. indica), two M. griffithii Hook. f., and three M. odorata Griff. accessions maintained at the National Germplasm Repository and by Fairchild Tropical Botanic Garden in Miami, Fla. The 25 microsatellite loci had an average of 6.96 alleles per locus and an average polymorphism information content (PIC) value of 0.552 for the M. indica population. The total propagation error in the collection (i.e., plants that had been incorrectly labeled or grafted) was estimated to be 6.13%. When compared by origin, the Florida cultivars were more closely related to Indian than to Southeast Asian cultivars. Unbiased gene diversity (Hnb) of 0.600 and 0.582 was found for Indian and Southeast Asian cultivars, respectively, and both were higher than Hnb among Florida cultivars (0.538). When compared by horticultural type, Hnb was higher among the polyembryonic types (0.596) than in the monoembryonic types (0.571). Parentage analysis of the Florida cultivars was accomplished using a multistage process based on introduction dates of cultivars into Florida and selection dates of Florida cultivars. In total, 64 Florida cultivars were evaluated over four generations. Microsatellite marker evidence suggests that as few as four Indian cultivars, and the land race known as `Turpentine', were involved in the early cultivar selections. Florida may not represent a secondary center of diversity; however, the Florida group is a unique set of cultivars selected under similar conditions offering production stability in a wide range of environments.

Free access

R.J. Schnell, J.S. Brown, C.T. Olano, E.J. Power, C.A. Krol, D.N. Kuhn, and J.C. Motamayor

Three horticultural races of avocado (Persea americana Mill.) are known: Guatemalan, Mexican, and West Indian. Each race has unique characteristics and current commercial varieties have been selected from within the races or from interracial hybrids. Using 14 microsatellite loci we investigated the genetic variation among 224 accessions (394 plants) maintained at the National Germplasm Repository (NGR) in Miami, Fla., and a set of 34 clones from the University of California South Coast Field Station (SCFS) located in Irvine, Calif. The 14 microsatellite loci had an average of 18.8 alleles per locus and average unbiased genetic diversity was 0.83. The total propagation error in the collection, i.e., plants that had been incorrectly labeled or grafted, was estimated to be 7.0%. Although many unique alleles did exist, no useful race-specific markers were found. A general concordance between the horticultural race and the clusters obtained from molecular data was observed. Principal Coordinate Analysis (PCA) grouped the Guatemalan and Mexican races into two distinct clusters. The West Indian also grouped into a unique major cluster but with an outlying group. Using the PCA a change in the racial designation or interracial hybrid status for 50 accessions (19.7%) is proposed. The unbiased gene diversity estimate was highest in the Mexican and Guatemalan races and lower in the West Indian group. This demonstrates the need to collect more of the West Indian germplasm to broaden the genetic diversity and to emphasize the identification of individuals conferring resistance to Phytophthora Root Rot (PRR).

Full access

S.S. Miller, R.W. McNew, B.H. Barritt, L. Berkett, S.K. Brown, J.A. Cline, J.M. Clements, W.P. Cowgill, R.M. Crassweller, M.E. Garcia, D.W. Greene, G.M. Greene, C.R. Hampson, I. Merwin, D.D. Miller, R.E. Moran, C.R. Rom, T.R. Roper, J.R. Schupp, and E. Stover

Cultivar and planting site are two factors that often receive minimal attention, but can have a significant impact on the quality of apple (Malus ×domestica) produced. A regional project, NE-183 The Multidisciplinary Evaluation of New Apple Cultivars, was initiated in 1995 to systematically evaluate 20 newer apple cultivars on Malling.9 (M.9) rootstock across 19 sites in North America. This paper describes the effect of cultivar and site on fruit quality and sensory attributes at a number of the planting sites for the 1998 through 2000 growing seasons. Fruit quality attributes measured included fruit weight, length: diameter ratio, soluble solids concentration (SSC), titratable acidity (TA), flesh firmness, red overcolor, and russet. Fruit sensory characteristics rated included crispness, sweetness, and juiciness, based on a unipolar intensity scale (where 1 = least and 5 = most), and acidity, flavor, attractiveness, and desirability based on a bipolar hedonic scale (where 1 = dislike and 5 = like extremely). All fruit quality and sensory variables measured were affected by cultivar. The two-way interaction of cultivar and planting site was significant for all response variables except SSC, TA, russet, crispness, and sweetness ratings. The SSC: TA ratio was strongly correlated with sweetness and acidity sensory rating, but was weakly correlated with flavor rating. The results demonstrate that no one cultivar is ideally suited for all planting sites and no planting site is ideal for maximizing the quality of all apple cultivars.