Search Results

You are looking at 1 - 10 of 28 items for

  • Author or Editor: C.E. Sams x
  • Refine by Access: All x
Clear All Modify Search
Free access

D.E. Deyton, C.E. Sams, and C.D. Pless

Four-year-old `Gala' and `Widjit' apple trees with significant apple aphid populations were sprayed to runoff on 13 May 1994 with 0%, 0.5%, 1.0%, or 2.0% (v/v) emulsified degummed soybean oil (SO) or with 1.0% petroleum (dormant) oil (PO). Treatments were arranged in a randomized complete-block design with five single-tree replications. Apple aphid populations were determined on 10 tagged shoots per tree. The top fully expanded leaf of two randomly selected shoots per tree were tagged and net photosynthesis (Pn) and transpiration (Tr) measured. Trees treated with SO or PO had <20% as many aphids after treatment as nontreated trees. Trees treated with 2% SO had lower Pn and Tr than the control for 18 days after treatment. Spraying 0.1% or 0.5% SO caused less initial reduction of Pn than 2.0% SO, and the effect was shorter lasting. Four-year-old `Oregon Spur' and `Empire' were sprayed with 0%, 0.1%, 0.5%, 1.0% SO or PO on 26 June. Treatments were arranged in a randomized complete-block design with four single-tree replications. Pn rates of trees treated with 0.1% to 1.0% soybean oil were <40% of nontreated trees the day after treatment, but recovered to >80% of control in 5 days.

Free access

D.E. Deyton, C.E. Sams, and J.C. Cummins

Treatments of 0, 10, 20, 30, or 40% (v/v) refined (salad) or crude soybean oil or 0, 5, 10, 15, or 20% petroleum (dormant) oil at 0, 5, 10, 15, or 20% were sprayed until drip on `Smoothee' apple trees on 27 February 1991. The internal carbon dioxide concentration was elevated and the oxygen content reduced within one day in buds-twigs treated with oil and remained influenced for up to 12 days. All oil treatments delayed fruit bud development. The lowest tested concentration of soybean oil (either crude or refined) resulted in the greatest delay in bud development and the greatest delay in bloom (approximately 4 days). Crude soybean oil treatment resulted in less damage to flower buds than petroleum oil.

Free access

C.D. Pless, D.E. Deyton, and C.E. Sams

Emulsions of degummed soybean (Glycine max L.) oil were compared to a petroleum oil emulsion for efficacy against winter populations of San Jose scale [Quadraspidiotus perniciosus (Comstock); Homoptera: Diaspididae] and European red mite [Panonychus ulmi (Koch); Acari: Tetranychidae] on dormant apple (Malus domestica Borkh.) trees and terrapin scale [Mesolecanium nigrofasciatum (Pergande); Homoptera: Coccidae] on dormant peach [Prunus persica (L.) Batsch.] trees. In laboratory tests, more than 94% of San Jose scale was killed on stems dipped for 1 second in 5.0% or 7.5% soybean oil or 5.0% petroleum oil. Mortality of terrapin scale exceeded 93% on peach stems dipped for 1 second in 7.5% soybean oil or 5.0% petroleum oil. No European red mite eggs survived on apple stems dipped for 1 second in 2.5%, 5.0%, or 7.5% soybean oil, or 5.0% petroleum oil. In field tests, >95% of San Jose scale died on apple trees sprayed with one application of 2.5% petroleum oil or 5.0% soybean oil; two applications of these treatments or 2.5% soybean oil killed all San Jose scales. One or two applications of 2.5% petroleum oil or 5.0% soybean oil killed 85% and 98%, respectively, of the terrapin scales on peach trees. Soybean oil shows promise as a substitute for petroleum oil for winter control of three very destructive fruit tree pests.

Free access

R. E. Myers, D. E. Deyton, and C. E. Sams

`Redhaven' peach trees at the Knoxville Experiment Station were sprayed to runoff on 3 February 1993 with single applications of 0, 2.5, 5.0, 10.0, or 15.0% (v/v) degummed soybean oil with 0.6% Latron AG 44M emulsifier. Treatments were arranged in a randomized complete block design with 6 single tree replications. The internal CO2 concentration of treated twigs was elevated the first day and continued to be significantly higher than the control through the fifth day following treatment. Respiration rates of soybean oil treated buds-twigs were lower than the control for the first eight days after treatment. Flower bud and bloom development were delayed by treatment of trees with 5.0 to 15.0% soybean oil. Treatment with 5.0% oil delayed bloom approximately 4 days. The greatest delay (approximately 6 days) occurred after treatment with 10.0 or 15.0% oil. Yield was reduced and fruit size increased as the concentration of soybean oil was increased. Optimum fruit size was achieved with the 5.0% soybean oil treatment.

Free access

R.E. Myers, D.E. Deyton, and C.E. Sams

Spurs of `Starkspur Delicious' trees were dipped in 0, 3, 6, 9 or 12% petroleum oil (dormant oil) or soybean oil emulsions on 26 January 1993. The spurs were cooled at 3C/hr until -9C or kept at 21C. After treatment, the flower buds on spurs were forced at 20C for 11 days and then dissected. The cambium and xylem of the spurs and the interior of the flower buds were rated for damage as indicated by browning. The experiment was repeated at the silver tip stage of buds (early March) except that treated spurs were exposed to 20C, -6C, or -9C. Neither the oil treatments nor low temperature exposure caused visual damage to flower buds or cambium in January. However, the oil treatments damaged flower buds at the silver tip stage (March). Neither petroleum or soybean oil caused visible damage to the xylem or cambium of the spurs.

Free access

R.E. Myers, D.E. Deyton, and C.E Sams

Dormant `Georgia Belle' peach [Prunus persica (L.) Batsch.] trees were sprayed in early February 1992 with single applications of 0%, 2.5%, 5.0%, 10.0%, or 20.0% (v/v) crude soybean oil. `Redhaven' trees were sprayed in February 1993 with single applications of 0%, 2.5%, 5.0%, 10.0%, or15% degummed soybean oil. Additional treatments of two applications of 2.5% or 5.0% oil were included each year. Both crude and degummed soybean oil treatments interfered with escape of respiratory CO2 from shoots and increased internal CO2 concentrations in shoots for up to 8 days compared to untreated trees. Respiration rates, relative to controls, were decreased for 8 days following treatment, indicating a feedback inhibition of respiration by the elevated CO2. Thus, an internal controlled atmosphere condition was created. Ethylene evolution was elevated for 28 days after treatment. Flower bud development was delayed by treating trees with 5% crude or degummed soybean oil. Trees treated with 10% crude or degummed soybean oil bloomed 6 days later than untreated trees. Repeated sprays of one half concentration delayed bloom an additional four days in 1992, but < 1 day in 1993 compared to a single spray of the same total concentration. Application of soybean oil caused bud damage and reduced flower bud density (number of flower buds/cm branch length) at anthesis. In a trial comparing petroleum oil and degummed soybean oil, yields of trees treated with 6% or 9% soybean oil were 17% greater than the untreated trees and 29%more than petroleum treated trees. These results suggest that applying soybean oil delays date of peach bloom and may be used as a bloom thinner.

Free access

Ryan R.P. Noble, C.S. Charron, and C.E. Sams

The development of alternative methods for control of soilborne pathogens is imperative since the U.S. Clean Air Act bans the use of methyl bromide after 2005. One possibility is to exploit the pesticidal properties of compounds released by macerated Brassica tissues. In this study, masked chaffer beetle larvae were placed in sealed 473-mL jars with 335 g of soil amended with 1%, 2%, 4%, or 8% (g·g–1) Brassica tissue. The most prevalent volatile toxic compound of Brassica juncea (PI 458934) is allyl isothiocyanate (AITC). AITC production was measured in the jars at 0.25, 4, 8, 24, and 48 h using a solid-phase microextraction device (SPME) and gas chromatography. After 7 days, larvae mortality was determined. Control treatments included untreated soil, soil amended with 8% tomato plant tissue, soil amended with pure AITC, and untreated soil with an atmosphere of ≈20% O2 and 0% CO2 changing over 48 h to 2% O2 and 20% CO2. AITC levels were positively correlated to larvae mortality. The estimated lethal concentration for 50% kill (LC50) was 3.6 μg AITC/L soil atmosphere. AITC levels may be influenced by Brassica mass added, soil bulk density, and environmental factors including temperature and moisture. B. juncea has a high tissue AITC concentration. However, the mass of Brassica tissue required for insecticidal application against Cyclocephala sp. is also high, between 4% and 8% of soil mass. Development and selection of Brassica species that produce higher concentrations of isothiocyanate would increase the effectiveness of Brassica biofumigation as an alternative to methyl bromide for controlling soilborne insects.

Free access

C.O. Chardonnet, C.E. Sams, and W.S. Conway

`Golden Delicious' apples (Malus ×domestica Borkh.) were pressure-infiltrated after harvest with 0%, 1%, 2%, 3%, or 4% CaCl2 solutions (w/v) and the chemical composition of the cell wall of the cortical tissue 2 to 4 mm under the epidermis was studied. The mineral composition of the control cell wall (0% CaCl2) was not affected by the pressure infiltration process. In addition, no significant change was noticed in cell wall associated protein, uronic acid, total polysaccharides, or non-cellulosic neutral sugar contents except for xylose and rhamnose, which decreased (-25%) and increased (+20%), respectively. When apples were infiltrated with CaCl2, Ca content of the cell wall increased and maximum accumulation was achieved with a 2% CaCl2 solution. Calcium infiltration also induced a two-fold increase in Na, a 27% decrease in P, and a 40% decrease in protein content. These data suggest that chemical changes occurring after Ca infiltration are not related to pressure infiltration alone, but are mainly due to the Ca accumulation in the cell wall after pressure infiltration of CaCl2 solutions. Saturation of the available binding sites for Ca occurred in the cell wall when fruit were infiltrated with 2% CaCl2, as no further significant changes in the cell wall chemical composition was detected in fruits infiltrated with 3% or 4% CaCl2.

Free access

Dennis E. Deyton, Carl E. Sams, and John C. Cummins

Treatments of single applications of 0%, 3%, 6%, 9%, or 12% dormant oil were sprayed on peach (Prunus persica L. Batsch) trees on 6 Feb. 1990. A repeat application of 6% oil plus 6% oil applied 6 days later was also made. Internal CO 2 concentrations of oil-treated buds and twigs were higher than the control the day after treatment and continued to be higher for 6 days. The second application of 10% oil prolonged the elevated CO2 concentration. Applications of 9% or 12% oil delayed flower bud development and bloom. The repeated application of 6% oil delayed bud development and bloom more than a single application of 6% oil. Damage to fruit buds increased as oil concentration increased, but repeated application of 6% oil resulted in less damage than a single application of 12% oil.

Free access

Dennis E. Deyton, Carl E. Sams, and John C. Cummins

Foliar sprays of increasing concentrations (0, 75, 150, 300, 600, and 1200 mg·liter-1) of paclobutrazol were applied to `Cardinal' strawberry plants (Fragaria × ananassa Duch.) 35 days after transplanting. The plants were established in August in cultivated plots for measurement of paclobutrazol effects on first year growth or in a double-row hill system on black polyethylene-covered raised beds for 2nd year measurements. Increasing the paclobutrazol concentration reduced the number of runners, decreased runner length, and limited biomass partitioned into daughter plants. By the end of the first growing season, paclobutrazol had increased lateral crown development but reduced leaf area per treated plant. Root growth was reduced by concentrations >600 mg·liter-1. Treatment with 75 to 300 mg·liter-1 increased total plant dry weight by 33% to 46%. The following spring, plant growth was decreased by ≥ 300 mg·liter-1. Yield was increased by all treatments, except 1200 mg·liter-1. Leaf net photosynthesis increased within 12 days after treatment with paclobutrazol and was higher than in the controls the next summer. Leaf stomata1 conductance also increased the first year and was significantly higher the 2nd year after treatment. The optimum concentration of paclobutrazol for strawberries appears to be between 150 and 300 mg·liter-1.