Search Results

You are looking at 1 - 10 of 11 items for

  • Author or Editor: C.E. Mortley x
Clear All Modify Search

Fertilizer placement under plastic was studied on 2 tomato cultivars (`TI-130' and `Floradade') during 1989. Treatments were 1, 2 or 3 increments of fertilizer broadcast, banded, broadcast/banded of banded with 1 or 2 sidedressings and a check. Fertilizer applied was NPK at 135-90-84 kg·ha-1 as a ammonium nitrate, triple superphosphate and muriate of potash, 10cm to each side of the plants and 10cm deep. Vine, total, marketable and early yields for lower rates either Br or Ba were as good as those of the full rate Br or Ba with 2 sidedressings (Ba/SD2). Leaf N, P, K, Ca and Mg for `TI-130' were not affected by placement. The Ba/SD2 placement Increased leaf N for `Floradade' but leaf Ca was reduced in all treatments vs the check. Leaf Mn was increased markedly by placements involving broadcasting at all rates.

Free access

Hydroponic growing systems have the potential to maximize phytomass production of peanut (Arachis hypogea) for Controlled Ecological Life Support Systems (CELSS). Two greenhouse experiments were conducted with plant nutrients supplied in a modified Evan's solutionusing a nutrient film technique. The objective of this research was to determine the effect of hydroponic growing systems on pod and foliage yield of `New Improved Spanish' and `Georgia Red' peanut. Sub-objectives were to evaluate (i) the impact of channel size and (ii) the impact of gradation in pore size on the separation of the rooting zone from the zone of gynophore development. The treatments consisted in the first experiment of a wide channel (122 by 15 by 46 cm) fitted with a perforated (3.0mm diam.) PVC grid; a narrow channel (122 by 15 by 15 cm) either fitted with a perforated grid or without a grid. For 'New Improved Spanish' peanut dry foliage yield tended to be higher in the wide channel treatment (0.33 kg/sq m). But the narrow channel yielded the highest mean pod dry weight (0.12 kg/sq m). Pore sizes of the screens ranged from infinity (no screen). perforated grid, square mesh. filtering screen (75u) and solid screen (no pores). For `Georgia Red' peanut, the impact of gradation in pore size of screens was variable: pod number was highest with the filtering (food) screen (216/sq m) but pod dry weight was highest for the square mesh treatment (0.09 kg/sq m). Foliage yield was significantly greater for the filtering (food) screen (1.12 kg/sq m) than in any of the other treatments. The findings of the research indicate that use of screens is feasible and will not retard pod development. The presence of a perforated grid tended to result in lower phytomass production for `New Improved Spanish' peanut.

Free access

The effects of within-channel spacings (WCS; 13, 18, 25 cm) and between-channel spacings (BCS; 13, 25,38 cm) on yield and linear growth rate of sweetpotatoes [Ipomoea batalas (L.) Lam.] grown by use of the nutrient film technique (NFT) were evaluated. Storage root count, fresh and dry weights, and linear growth rate, expressed as root area, declined linearly in response to decreased BCS, while fresh and dry foliage weight decreased linearly and quadratically as spacing was reduced within the growth channels. Neither linear growth rate on a canopy area basis nor the edible biomass index was significantly affected by WCS or BCS.

Free access

`Georgia Red' peanut (Arachis hypogaea L.) was grown hydroponically at 20/16 °C, 24/20 °C, 28/24 °C, and 32/28 °C, day/night air temperatures to evaluate effects on pod and seed yield, flowering, harvest index, and oil content. Ten-day-old peanut seedlings were transplanted into rectangular nutrient film technique troughs (0.15 × 0.15 × 1.2 m) and grown for 110 days. Growth chamber conditions were as follows: photosynthetic photon flux (PPF) mean of 436 μmol·m-2·s-1, 12 h light/12 h dark cycle, and 70% ± 5% relative humidity. The nutrient solution used was a modified half-Hoagland with pH and electrical conductivity maintained between 6.5 to 6.7, and 1000 to 1300 μS·cm-1, respectively, and was replenished weekly. Vegetative growth (foliage, stem growth, total leaf area, and leaf number) was substantially greater at increasingly warmer temperatures. Reproductive growth was significantly influenced by temperature. Flowering was extremely sensitive to temperature as the process was delayed or severely restricted at 20/16 °C. The number of gynophores decreased with temperature and was virtually nonexistent at the lowest temperature. Pod yield increased with temperatures up to 28/24 °C but declined by 15% at the highest temperature (32/28 °C). Seed yield, maturity, and harvest index were highest at 28/24 °C. Oil content (percent crude fat) increased an average of 23% and was highest at the warmest temperature (32/28 °C). These results clearly suggest that vegetative and reproductive growth, as well as oil content of peanut in controlled environments, are best at warmer temperatures of 28/24 °C to 32/28 °C than at cooler temperatures of 20/16 °C to 24/20 °C.

Free access

Growth chamber studies were conducted to determine if inverse day/night temperature could control canopy height of sweetpotato without adversely affecting storage root yield. Four 15-cm-long vine cuttings of TU-82-155 sweetpotato were grown in rectangular nutrient film technique hydroponic troughs for 120 days. Two troughs were placed into each of six reach-in growth chambers and subjected to 24/18, 26/20, 28/22, 18/24, 20/26, and 22/28 °C, respectively. Growth chamber conditions included a 12/12-h photoperiod, 70% RH, and photosynthetic photon flux of 1000 μmol·m-2·s-1 at canopy level. Total and edible storage root yields were reduced by 50% among plants grown under cool days/warm nights regimes. Harvest index was similar among treatments except for the low value obtained at 22/28 °C. Canopy height was positively correlated with the change in temperature, and for every 2 °C decrease there was a 3.1 centimeter decrease in canopy height. Inverse day/night temperature effectively controlled canopy height but at the expense of storage root production.

Free access

Growth chamber experiments were conducted to study the physiological and growth response of sweetpotato [Ipomoea batatas (L.) Lam.] to either 50% or 85 % relative humidity (RH). Vine cuttings of T1-155 were grown using the nutrient film technique in a randomized complete-block design with two replications. Temperature regimes of 28/22C were maintained during the light/dark periods with irradiance at canopy level of 600 μmol·m-2·s-1 and a 14/10-hour photoperiod. High RH (85%) increased the number of storage roots per plant and significantly increased storage root fresh and dry weight, but produced lower foliage fresh and dry weight than plants grown at 50% RH. Edible biomass index and linear growth rate (in grams per square meter per day) were significantly higher for plants grown at 85 % than at 50% RH. Leaf photosynthesis and stomatal conductance were higher for plants at 85 % than at 50% RH. Thus, the principal effect of high RH on sweetpotato growth was the production of higher storage root yield, edible biomass, growth rate, and increased photosynthetic and stomatal activity.

Free access

Two sweetpotato [Ipomoea batatas (L.) Lam] genotypes (`Georgia Jet' and the breeding clone TI-155) were grown at 12-, 15-, 18-, and 21-h light/12-, 9-, 6-, 3-h dark cycles, respectively, to evaluate their growth and elemental concentration responses to duration and amount of daily lighting. Vine cuttings (15 cm long) of both genotypes were grown in rectangular nutrient film technique channels for 120 days. Conditions were as follows: photosynthetic photon flux (PPF) mean 427 μmol·m–2·s–1, 28C day/22C night air cycle, and 70% ± 5% relative humidity. The nutrient solution used was a modified half-strength Hoagland's solution. Storage root count per plant and per unit area, yield (in grams per square meters per day), and harvest index increased, while production efficiency (in grams per mole) decreased with increased daily PPF. Stomatal conductance for both genotypes declined with increased daily PPF. Leaves were smallest for both genotypes at the 21-h light period, while storage root yield declined as leaf area index increased. Except for a linear decrease in leaf N and K with increased light period, elemental concentration was not significantly influenced.

Free access

Growth chamber experiments were conducted to study the physiological and growth response of peanut (Arachis hypogaea L.) to 50% and 85% relative humidity (RH). The objective was to determine the effects of RH on pod and seed yield, harvest index, and flowering of peanut grown by the nutrient film technique (NFT). `Georgia Red' peanut plants (14 days old) were planted into growth channels (0.15 × 0.15 × 1.2 m). Plants were spaced 25 cm apart with 15 cm between channels. A modified half-Hoagland solution with an additional 2 mm Ca was used. Solution pH was maintained between 6.4 and 6.7, and electrical conductivity (EC) ranged between 1100 and 1200 μS·cm–1. Temperature regimes of 28/22 °C were maintained during the light/dark periods (12 hours each) with photosynthetic photon flux (PPF) at canopy level of 500 μmol·m–2·s–1. Foliage and pod fresh and dry weights, total seed yield, harvest index (HI), and seed maturity were greater at high than at low RH. Plants grown at 85% RH had greater total and individual leaflet area and stomatal conductance, flowered 3 days earlier and had a greater number of flowers reaching anthesis. Gynophores grew more rapidly at 85% than at 50% RH.

Free access

`Georgia Red' peanut (Arachis hypogaea L.) and TU-82-155 sweetpotato [Ipomoea batatas (L.) Lam] were grown in monocultured or intercropped recirculating hydroponic systems in a greenhouse using the nutrient film technique (NFT). The objective was to determine whether growth and subsequent yield would be affected by intercropping. Treatments were sweetpotato monoculture (SP), peanut monoculture (PN), and sweetpotato and peanut grown in separate NFT channels but sharing a common nutrient solution (SP-PN). Greenhouse conditions ranged from 24 to 33 °C, 60% to 90% relative humidity (RH), and photosynthetic photon flux (PPF) of 200 to 1700 μmol·m-2·s-1. Sweetpotato cuttings (15 cm long) and 14-day-old seedlings of peanuts were planted into growth channels (0.15 × 0.15 × 1.2 m). Plants were spaced 25 cm apart within and 25 cm apart between growing channels. A modified half-Hoagland solution with a 1 N : 2.4 K ratio was used. Solution pH was maintained between 5.5 and 6.0 for treatments involving SP and 6.4 and 6.7 for PN. Electrical conductivity (EC) ranged between 1100 and 1200 μS·cm-1. The number of storage roots per sweetpotato plant was similar for both SP and SP-PN. Storage root fresh and dry mass were 29% and 36% greater, respectively, for plants in the SP-PN treatment than for plants in the SP treatment. The percent dry mass of the storage roots, dry mass of fibrous and pencil roots, and the length-to-diameter ratio of storage roots were similar for SP and SP-PN sweetpotato plants. Likewise, foliage fresh and dry mass and harvest index were not significantly influenced by treatment. Total dry mass was 37% greater for PN than for SP-PN peanut plants, and pod dry mass was 82% higher. Mature and total seed dry mass and fibrous root dry mass were significantly greater for PN than for SP-PN plants. Harvest index (HI) was similar for both treatments. Root length tended to be lower for seedlings grown in the nutrient solution from the SP-PN treatment.

Free access

In 1991 leafless stem cuttings 7 nodes long from 4 maternal parents (`Carver', Carver ii', `TU-1892' and `Georgia-Jet') and their progenies (MP/P) were planted 3 nodes deep in greenhouse benches filled with Jiffy-Mix to determine if any similarity in storage (SR) or fibrous root (FR) patterns could be used to identify high yielding cultivars in a breeding program. The experiment was planted in a complete randomized block design with 7 replications for each treatment and the total number of SR and FR data were collected over a 9 wk period with weekly sampling. The results indicated that SR initiation was a continuos process and took from 5-9 wk before reaching a maximum level for some MP/P. There was a significant inverse relationship between SR and FR numbers, as SR increased FR decreased. SR for most MP/P were initiated at the underground node closest to the soil surface and FR at the lower two nodes. When regression equations were used on the greenhouse data to predict total number of SR that would be produced in a field trial, no significant differences were found between the number of SR initiated in the greenhouse and field trial 80 days after transplanting by some of these MP/P. However, cultivars with the highest number of storage roots in the field trial did not have the highest number of marketable roots or yield and this was probably due to differences among MP/P in the rate of root enlargement.

Free access