Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: C.A. Neal x
Clear All Modify Search
Authors: and

Abstract

Thirteen species of woody ornamentals were treated over-the-top with glyphosate in a 6 × 6, rate by time factorial experiment. The influence of application timing on glyphosate phytotoxicity was significant for all species. The times of maximum tolerance and injury were species dependent. Species were organized into 4 response groups based on the effects of application time. Group 1 species, including ajuga (Ajuga reptans L.), azalea (Rhododendron obtusum Planch. ‘Coral Bells’), and a variegated liriope (Liriope muscari L.H. Bailey), were injured on all application dates. Species in groups 2, 3, and 4 exhibited tolerance to fall applications of glyphosate. Group 2, including wax leaf privet (Ligustrum japonicum Thunb.), sustained maximal injury from spring applications. Group 3 species, including Compacta holly (Ilex crenata Thunb. ‘Compacta’), were injured most by summer applications of glyphosate. However, Blue Rug juniper (Juniperus horizontalis Moench ‘Wiltonii’), a representative of group 4, was tolerant of glyphosate applications, sustaining only temporary tip chlorosis from spring and early summer treatments. First season evaluations were not sufficient to describe the ultimate effects of glyphosate on plant quality. Visual and objective evaluations in the 2nd growth season also were necessary. Chemical name used: N-(phosphonomethyl) glycine (glyphosate).

Open Access
Authors: , , , and

A cooperative project between the Univ. of Florida Cooperative Extension Service, USDA Natural Resources Conservation Service, and Consolidated Farm Services Agency to address farm nutrient use and water management in the Lake Apopka hydrologic unit area of Florida began in 1991. This area was selected due to the vegetable production on the organic soils (muck) and sandy soils north of Lake Apopka, Florida's most polluted large lake. Discharge of nutrient-laden water into the lake from the 4050-ha vegetable production area has been implicated as a major contribution to the hypereutrophic status of the lake. Changes in cultural practices including water management, which would lead to a reduction in nutrient loading, should aid in the restoration of the lake. A grower survey of fertilizer application rates was conducted each year for 4 years with the baseline established by the 1991 survey. Demonstration plots using soil tests as the basis for fertilizer rates compared to normal grower rates of fertilizer were established for carrots, sweet corn, and celery. In 1995, muck growers had reduced their total application of N by 16%, P 52%, and K 32%, without reducing yields or quality. Nutrient applications were reduced by over 656 t/year over the years surveyed. Farms have saved fertilizer and reduced environmental risks.

Free access

With increased mobile device usage, mobile applications (apps) are emerging as an extension medium, well suited to “place-less” knowledge transfer. Conceptualizing, designing, and developing an app can be a daunting process. This article summarizes the considerations and steps that must be taken to successfully develop an app and is based on the authors’ experience developing two horticulture apps, IPMPro and IPMLite. These apps provide information for major pests and plant care tasks and prompt users to take action on time-sensitive tasks with push notifications scheduled specifically for their location. Topics such as selecting between a web app and a native app, choosing the platform(s) for native apps, and designing the user interface are covered. Whether to charge to download the app or have free access, and navigating the intra- and interinstitutional agreements and programming contract are also discussed. Lastly, the nonprogramming costs such as creating, editing, and uploading content, as well as ongoing app management and updates are discussed.

Full access

Mobile device applications (apps) have the potential to become a mainstream delivery method, providing services, information, and tools to extension clientele. Testing, promoting, and launching an app are key components supporting the successful development of this new technology. This article summarizes the considerations and steps that must be taken to successfully test, promote, and launch an app and is based on the authors’ experience developing two horticulture apps, IPMPro and IPMLite. These apps provide information for major pests and plant care tasks and prompt users to take action on time-sensitive tasks with push notifications scheduled specifically for their location. App testing and evaluation is a continual process. Effective tactics for app testing and evaluation include garnering focus group input throughout app development and postlaunch, in-house testing with simulators, beta testing and the advantages of services that enhance information gained during beta testing, and postlaunch evaluations. Differences in promotional and bulk purchasing options available among the two main device platforms, Android and iOS, are explored as are general preparations for marketing the launch of a new app. Finally, navigating the app submission process is discussed. Creating an app is an involved process, but one that can be rewarding and lead to a unique portal for extension clientele to access information, assistance, and tools.

Full access