Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Byeong Sam Kim x
Clear All Modify Search

Recently, the acreages Japanese apricot have been increased for being known of the medical functions. However, the increase of tree height, overgrowing trees and light deficiency at the bottom of canopy induced the poor fruit quality and higher labor charges. This study was conducted to assess the effects of training time, angle and length of water sprout on tree growth, the shoot-curbing, and the occurrence of new shoot for 2 years. Water sprouts were trained on 5, and 25 June, and 15 July with three varying angles of 30°, 45° and 60°, and cut at three lengths (50, 80, 110_) after harvest. Compared to control, the treatment on June 25 showed the highest values of 76%, 82% of internode and shoot length respectiely. In the treatment of training angle, shoot length was 71% in both 30° and 45° but heavily limited to 36% in 60° with comparing to control. The occurrence of shoots showed 18.1, 24.6, and 36.3 in treatment of 50, 80 and 110 cm, respectively, and in 80 cm, the number of shoot with diameter more than 0.5 mm, which is suitable for bearing mother branch, was higher. The best result was obtained in method of branch training with 45° and heading-back 80 cm at height on 15 June for the renewal of lateral branch.

Free access

This experiment was carried out to investigate the effective cutting methods and media for hardwood cuttings in `Sunaga Wase' peach (Prunus persica L.). Using 1-year-old peach stems out of winter pruning, the cutting stems were procurred through several steps on 16 Feb. 1995 and 1996. i) Cut 30 cm in length by pruning scissors and bundled to 10 stems; ii) 1-cm bottom part of cutting stem dipped into IBA (1000 ppm solution) for 5 s and then powdering with Captan WP; iii) upper part of cutting stem coated with Topsin paste; iv) standing the bundled cutting stems in the cutting bench filled with cutting media; v) the temperature maintained at 20 ± 1°C under the level of cutting media by bottom heating and at 5 to 10°C above the media level. Among the cutting media, vermiculite showed the highest rooting percentage, as much as 93.2%, followed by Jiffy pot and rockwool cube. High transplanting survival percentage under field conditions was obtained by the treatment of vermiculite of media + cutting duration for 35 days. Although the treatment of cutting duration for 55 days showed very high percentage of rooting, such as 96.4% in vermiculite, 78.3% in Jiffy pots, and 83.3% of rockwool cube, their percentage of nursery survival after transplanting were reduced remarkably less than 10% in nursery fields covered with black polyethylene film. The nursery trees obtained from each treatment were characteristically 136 to 146 cm in tree height and 22.9 to 26.8 cm in trunk diameter.

Free access

In order to investigate the super-density planting in peach orchards, the experiment was carried out using nursery trees out of hardwood cuttings in `Sunaga Wase' peach (Prunus persica L.). The nursery trees were planted with various planting densities of 1 × 0.5 m (20,000 trees/ha), 1 × 1 m (10,000 trees/ha), 2 × 0.5 m (10,000 trees/ha), 2 × 1 m (5,000 trees/ha), and 6 × 5 m (330 trees/ha) as traditional density on 22 Mar. 1995. As soon as fruit harvest in mid-July, the peach trees were pruned by thinning and heading-back the shoots to induce the new shoot as well as to limit the tree height and lower the canopy. During the second year after planting, nursery cutting trees yielded the most peach fruits from the planting density of 1 × 0.5 m, as much as 14.37 t, which was 14 times higher than the 6 × 5 m of traditional density, followed by 2 × 0.5 m, 1 × 1 m, 2 × 1 m, and 6 × 5 m, respectively. According to summer pruning just after harvest, remaining vegetative buds burst and then the new shoot grew very vigorously in several days. The floral bud differentiation on the new shoots was lower, as much as 32.2%, than that of 77.9% in no-pruning shoots. There were no differences in fruit characteristics among various planting densities.

Free access

The objective of this study was to determine the effect of Rhodopseudomonas p., which isolated from domestic soil on the density of microorganism in soil, leaf and SSC in pear (Pyrus pyrifolia) fruit. The solution of Rhodopseudomonas p. was sprayed over canopy and fertigated around trunk in 12-year-old `Niitaka' pear with Y-training system. The spray and fertigation were performed 11 times at 15-day intervals from 22 Apr. to 22 Sept. with 200 times diluted solution (v/v). The width and length of treated leaf was increased by 1.4 mm and 0.9 mm compared to them of control. There was no difference in chlorophyll a content between treatments. The treatment increased SSC relatively to control by 0.7% and fruit firmness by 0.29 higher but there was no difference fruit weight. Hinter `L' value was higher by 3.5 and Hunter `a' lower by 0.2 compared to control so fruit color was more clean than control. In fertigation treatment, the density of microorganism and fluorescent bacteria in soil showed increasing tendency compared to control but the opposite in bacteria. These results suggested that the spray and fertigation of Rhodopseudomonas p. solution improve SSC and color of pear fruit.

Free access