Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Bryan T. Vinyard x
Clear All Modify Search
Free access

Mark K. Ehlenfeldt and Bryan T. Vinyard

A study was conducted to determine if early-fall pruning (vs. more typical winter pruning) of either northern highbush or southern highbush blueberries was detrimental to the development of optimum levels of mid-winter cold hardiness in floral buds under New Jersey conditions. Using a detached-shoot freeze-thaw assay, flower-bud LT50 values were determined in early January for both ‘Jersey’ (northern highbush) and ‘Legacy’ (southern highbush) blueberry bushes that had been subjected to early- or late-pruning protocols. Across 2 years, intrinsic differences due to genotype and genotype × year were present, but no significant differences due to pruning time were observed. The lack of pruning effects on flower-bud LT50 values suggests that cultivars with southern germplasm selected in areas such as North Carolina and further north may be treated similarly to northern highbush with respect to pruning time, including early-fall pruning.

Free access

Kathleen G. Haynes, Beverly A. Clevidence, David Rao and Bryan T. Vinyard

Carotenoids have a wide range of human health benefits. Yellow-fleshed tetraploid potato (Solanum tuberosum) cultivars have more than twice the concentration of carotenoids as white-fleshed cultivars. However, carotenoid concentrations in some diploid potatoes have been reported to be up to 13 times higher than in ‘Yukon Gold’, the most popular yellow-fleshed potato cultivar grown in the United States, and up to 22 times higher than in white-fleshed potatoes. The purpose of this study was to determine the feasibility of using these high-carotenoid diploids to develop high-carotenoid tetraploid germplasm. Three diploid clones with high (dark yellow-flesh), moderate (moderate yellow-flesh), and low (white–cream-flesh) carotenoid levels that produced 2n pollen were crossed with a light yellow-fleshed tetraploid advanced breeding selection to determine the inheritance of carotenoid content. Twenty-six to 43 progeny from these three 4x-2x families were grown in a replicated field experiment in Presque Isle, ME, for 2 years. After harvest, carotenoids were extracted and quantified by high-performance liquid chromatography in 13 to 14 randomly selected clones from each family; however, flesh color was scored as white or yellow in all progeny. A continuous distribution of carotenoid concentration with high- and low-carotenoid segregants was observed in all three families. There were no significant differences among these three families for individual or total carotenoid concentrations; however, there were significant differences among clones within families. Broad-sense heritability estimates were high for total carotenoid (0.81), lutein (0.77), zeaxanthin (0.73), and the lycopene beta-cyclase pathway carotenoids (0.73); moderate for neoxanthin (0.42); and low for violaxanthin (0.21) and antheraxanthin (0.13). Based on flesh color segregation, the two yellow-fleshed diploid parents were heterozygous for the Chy2 allele governing yellow-flesh and produced 2n gametes by a second division restitution mechanism. It appears that selection for high-carotenoid tetraploid germplasm can be made from within any family with at least one yellow-fleshed parent. Selections will have to be made on an individual clonal basis rather than on a family basis.

Free access

Mark K. Ehlenfeldt, Lisa J. Rowland, Elizabeth L. Ogden and Bryan T. Vinyard

Cold injury to plants can occur by early fall freezes before cold acclimation, by severe midwinter freezes that exceed the limits of the plant's tolerance, or by hard freezes in late winter or early spring after partial or complete deacclimation. Ideally, blueberry (Vaccinium L.) cultivars for temperate regions should acclimate to cold quickly in the fall, have a high midwinter-hardiness, and deacclimate late and/or slowly during spring or during unseasonably warm spells in winter, and do all of this without adversely delaying time of fruiting. Until recently, only limited evaluations have been done on the acclimation and deacclimation process in blueberry, although it is an integral part of flower bud survival and, thus, is directly related to potential yield. In this study, we have measured the timing and rate of acclimation and deacclimation in seven blueberry genotypes with different amounts of diverse species germplasm in their backgrounds. Primary differences observed among the seven genotypes were differences in maximum hardiness levels and the date at which they were reached, and differences in the date at which maximum acclimation levels were no longer sustained and deacclimation started. Highbush cultivars Bluecrop and Legacy (V. corymbosum L.), rabbiteye cultivar Tifblue [V. ashei Reade (= V. virgatum Aiton)], and two rabbiteye hybrid derivatives (US 1043 and US 1056) all reached maximum or near maximum cold-hardiness by late December with temperatures causing 50% lethality (LT50) in a range from –22 to –27 °C. The half-high, ‘Northsky’, and a hybrid of V. constablaei Gray × V. ashei ‘Little Giant’ both achieved cold acclimation of –28 °C or below (the lowest value we could measure) by the end of November. After reaching their maximum hardiness in late December, ‘Legacy’, ‘Tifblue’, and US 1043 began a sustained and relatively linear deacclimation, whereas US 1056, ‘Bluecrop’, ‘Northsky’, and ‘Little Giant’ sustained their acclimation for longer intervals. ‘Bluecrop’ and US 1056 did not begin to deacclimate until early March, and ‘Little Giant’ and ‘Northsky’ had no LT50 values higher (warmer) than –25 °C until late March. As concerns about climate change increase, knowledge of the ability of breeding germplasm to tolerate greater temperature extremes and fluctuations will prove increasingly valuable.

Full access

Susan L.F. Meyer, Dilip K. Lakshman, Inga A. Zasada, Bryan T. Vinyard and David J. Chitwood

Clove oil derived from the clove plant [Syzygium aromaticum (=Eugenia caryophyllata)] is active against various soil-borne plant pathogens and therefore has potential for use as a bio-based pesticide. A clove oil formulation previously found to be toxic to the southern root-knot nematode (Meloidogyne incognita) in laboratory assays was investigated in greenhouse studies for nematode suppression and phytotoxicity on vegetable crops. Phytotoxicity studies were conducted with 0.1%, 0.2%, and 0.3% clove oil applied to soil 0, 2, 5, and 7 days before transplant of cucumber (Cucumis sativus), muskmelon (Cucumis melo), pepper (Capsicum annuum), and tomato (Solanum lycopersicum) seedlings. Tomato seedlings were the most sensitive to clove oil. The 0.2% and 0.3% clove oil concentrations applied as drenches at transplant (0 day) were the most phytotoxic to seedlings of all the tested vegetable species, with only 0% to 50% seedling survival. Most of the clove oil concentrations applied as drenches at transplant decreased shoot heights and fresh shoot weights of all seedlings. Some applications of clove oil at 0.2% and 0.3%, applied 2, 5, or 7 days before transplant also significantly reduced shoot growth, especially of pepper and tomato. Greenhouse experiments evaluating suppression of nematode populations on cucumber were conducted with 0.10%, 0.15%, and 0.20% clove oil applied 7 days before transplant. Overall, plants inoculated with nematodes tended to have smaller shoots and heavier roots than plants without nematodes. Effects of clove oil treatments on nematode population densities were inconsistent between the two trials. In Trial 1, 0.10% and 0.15% clove oil decreased population densities compared with the carrier control. In Trial 2, nematode population densities were lowest in the water and carrier control treatments. The results indicate that, with the tested clove oil formulation and application times, southern root-knot nematode populations would not be consistently reduced with clove oil concentrations that were not phytotoxic to one or more of the tested vegetable crops.

Free access

Mark K. Ehlenfeldt, Lisa J. Rowland, Elizabeth L. Ogden and Bryan T. Vinyard

From 2004 to 2006, cold hardiness assays were performed to evaluate the relative winterhardiness of flower buds in selections of pure Vaccinium ashei Reade and V. constablaei Gray as well as in selections/families composed of various combinations of V. ashei and V. constablaei germplasm. Significant differences were observed among entries with LT50 values ranging from −17.2 to −28.4 °C. An analysis of LT50 versus percent V. constablaei yielded a regression of LT50 (°C) = (−0.08 × V. constablaei percentage) – 21.57. Families or selections with 50% (or greater) V. constablaei and some with 25% V. constablaei had LT50 values equivalent to or better than ‘Bluecrop’. Based on this information, a 25% V. constablaei constitution appears suitable to develop northern-adapted rabbiteye types if proper parents are selected and if sufficient selection pressure for winterhardiness is exercised.

Free access

Kathleen G. Haynes, Beverly A. Clevidence, David Rao, Bryan T. Vinyard and J. Marion White

Consumption of carotenoid-containing foods can promote human health. Although yellow-fleshed potatoes (Solanum tuberosum) have a higher carotenoid content than white-fleshed potatoes, little is known about how growing environments may affect individual and total carotenoid content in different potato clones. The purposes of this study were to estimate the amount of genetic variability in potato for five xanthophyll carotenoids, their concentration, and to determine the stability of these carotenoids across environments. Nine white- or yellow-fleshed tetraploid clones were grown in Maine and Florida for 2 years. Carotenoids were extracted in acetone and analyzed by high-performance liquid chromatography. There were significant differences among clones for zeaxanthin, antheraxanthin, lutein, and total carotenoid content. There were significant clone × environment interactions for zeaxanthin, antheraxanthin, violaxanthin, neoxanthin, lutein, and total carotenoid. Broad-sense heritabilities (and their 95% confidence intervals) were 0.89 (0.79–0.98) for zeaxanthin, 0.93 (0.87–0.99) for antheraxanthin, 0.68 (0.14–0.92) for violaxanthin, 0.51 (0.00–0.88) for neoxanthin, 0.85 (0.70–0.97) for lutein, and 0.96 (0.89–0.99) for total carotenoid. Clonal mean total carotenoid content ranged from 101 to 511 μg/100 g fresh weight. A higher proportion of carotenoids were produced by the lycopene epsilon cyclase branch of the carotenoid biosynthetic pathway in white-fleshed than yellow-fleshed clones. Total carotenoid content in B2333-5 was significantly greater than in ‘Yukon Gold’. With genetic variation for individual and total carotenoid content in potatoes, improving the levels of carotenoids has been and should continue to be feasible; however, concentrations are likely to vary in different environments.

Free access

Robert A. Saftner, Judith A. Abbott, William S. Conway, Cynthia L. Barden and Bryan T. Vinyard

Fruit quality, sensory characteristics, and volatiles produced by 'Gala' apples (Malus ×domestica Borkh.) were characterized following regular atmosphere (RA) storage without and with a prestorage heat treatment (38 °C for 4 days) or controlled atmosphere (CA) storage at 0 and 2 °C for 0 to 6 months plus 7-day shelf life at 20 °C. Static CA conditions were 0.7 kPa O2 plus 1.0 kPa CO2, 1.0 kPa O2 plus 1.0 kPa CO2, and 1.5 kPa O2 plus 2.5 kPa CO2. Most of the more abundant volatiles were esters; the rest were alcohols, an aldehyde, a ketone, and an aryl ether. Respiration and ethylene production rates, internal atmospheres of CO2 and ethylene, and volatile levels were reduced following CA storage compared with RA storage without and with a prestorage heat treatment. Magness-Taylor and compression firmness, titratable acidity, and sensory scores for firmness, sourness, apple-fruity flavor, and overall acceptability were higher for CA-than for RA-stored fruit. Soluble solids content and sensory scores for sweetness were similar among all treatments. Quality and sensory characteristics were generally similar in heated and nonheated RA-stored fruit, and between 0 and 2 °C in CA- and RA-stored fruit. While one CA regime had a higher CO2 concentration than the others tested, CA effects on quality and sensory characteristics were generally more pronounced at the lower O2 levels. Quality characteristics declined between 2 and 4 months storage. The results indicate that short-term CA storage can maintain instrumental and sensory quality of 'Gala' apples.

Free access

Lisa J. Rowland, Elizabeth L. Ogden, Fumiomi Takeda, David Michael Glenn, Mark K. Ehlenfeldt and Bryan T. Vinyard

Injury of open flowers often occurs in fruit crops by late winter or early spring frosts and can result in significant reduction in yield. In this study, freezing tolerance of open flowers of five highbush blueberry cultivars, Bluecrop, Elliott, Hannah’s Choice, Murphy, and Weymouth, was determined using two freezing methods. Methods involved either placing whole plants in a radiation frost chamber or detached shoots in a glycol-freezing bath. In both methods, plants (or excised shoots) with opening flowers were exposed to temperatures ranging from –2 to –10 °C. After freeze treatments, several flower parts were evaluated for damage and the lethal temperature50 (LT50) determined. In order, from the most sensitive flower part to the least sensitive on average, were the corolla, filament, anther, style, exterior ovary, stigma, ovules, interior ovary, and placenta. A two-way analysis of variance (ANOVA) found no significant effect of the freezing method on the calculated freeze damage to most of the various flower parts. However, a significant genotype effect was found on freeze damage to the style, filament, anthers, and exterior ovary. Overall, ‘Bluecrop’ was the most sensitive to freezing, whereas ‘Hannah’s Choice’ and ‘Murphy’ were the most freezing-tolerant. In conclusion, genotypic variability in frost tolerance of open highbush blueberry flowers was detected, which can be exploited in breeding for more frost-tolerant cultivars.