Search Results
You are looking at 1 - 10 of 21 items for
- Author or Editor: Brian Schwartz x
Drought avoidance is dictated by a collection of traits used to maintain tissue hydration levels and turgidity during water-limited conditions. These traits include deeper and more extensive rooting and the closure of stomata to limit the transpiration of water from leaves. Zoysiagrasses are a group of warm-season turfgrasses, including Zoysia japonica and Zoysia matrella, that are valued for their turfgrass quality; however, they are susceptible to drought relative to other warm-season turfgrass species. The objectives of the study were to determine 1) differences in drought avoidance among a collection of zoysiagrasses and 2) which drought avoidance traits contributed to these differences. Fifteen zoysiagrass genotypes were exposed to either drought or control conditions in a greenhouse environment. Overall performance was assessed by evaluating turfgrass quality and percentage green cover. Drought avoidance was estimated by measuring leaf hydration levels and drought avoidance traits [including stomatal conductance (g S)]; root traits such as total root biomass, specific root length (SRL), and root length density (RLD) were measured. Compared with commercial cultivars Meyer, Palisades, or Zeon, some experimental genotypes maintained greater turfgrass quality during drought, with experimental genotype ‘09-TZ-54-9’ having a quality rating of 7.8 after 20 days of drought compared with 5.3 in ‘Zeon’, 5.2 in ‘Meyer’, and 5.0 in ‘Palisades’. A range of belowground traits such as root biomass was also found to be associated with drought avoidance, with experimental ‘09-TZ-53-20’ having 1.03 total grams, and 2.39 total grams in ‘10-TZ-1254’, compared with 1.14, 1.66, and 3.44 total grams in ‘Meyer’, ‘Zeon’, and ‘Palisades’, respectively. Significant differences in drought avoidance were found among the 15 genotypes, with both belowground rooting traits and aboveground factors affecting transpiration influencing plant performance.
Bermudagrass (Cynodon spp.) is the foundation of the turfgrass industry in most tropical and warm-temperate regions. Development of bermudagrass as a turfgrass began in the early 1900s. Many of the cultivars commercially available today have been cooperatively released by the U.S. Department of Agriculture Agricultural Research Service (USDA-ARS) and the University of Georgia at the Coastal Plain Experiment Station in Tifton, GA.
The fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), is an important pest of warm-season turfgrass species, including bermudagrass (Cynodon spp.). Bermudagrass is a popular turfgrass that is widely planted on golf courses, athletic grounds, and ornamental landscapes across the country and throughout the world. Spodoptera frugiperda infestation is often sporadic; however, when it does occur, damage can be severe. Host plant resistance against S. frugiperda can be a valuable tool for reducing or preventing the use of insecticides. Therefore, the objective of this study was to determine resistance against S. frugiperda in a few promising bermudagrasses. Fourteen experimental bermudagrass genotypes plus two control cultivars, ‘Zeon’ zoysiagrass (resistant control) and ‘TifTuf’ bermudagrass (susceptible control), were evaluated against S. frugiperda to determine host plant resistance in the laboratory. The results showed that the resistant control, ‘Zeon’ zoysiagrass, was more resistant than the other genotypes to S. frugiperda larvae. To determine the response of the experimental lines to S. frugiperda as compared with that of the controls, three indices were developed based on survival, development, and overall susceptibility. According to the susceptibility index, ‘13-T-1032’, ‘T-822’, ‘11-T-510’, ‘12-T-192’, ‘11-T-56’, ‘09-T-31’, ‘11-T-483’, and ‘13-T-1067’ were the top-ranked bermudagrasses. Among these, the responses of ‘13-T-1032’, ‘T-822’, ‘11-T-510’, ‘11-T-56’, ‘09-T-31’, and ‘11-T-483’ were comparable to that of ‘TifTuf’, and antibiosis was the underlying mechanism of resistance. Additionally, larval length, head capsule width, and weight were negatively associated with the days of pupation and adult emergence and positively associated with pupal length, thorax width, and weight. These results will help refine future breeding and with investigations of resistance against the fall armyworm.
Ornamental grasses such as fountaingrass or napiergrass, collectively called pennisetums, belong to the genus Pennisetum, which is a diverse genus with over 80 species adapted to a wide range of climatic regions and known for its drought tolerance. Breeding efforts have led to improvements such as more intense purple foliage color, disease resistance, and apparent sterility. These improved forms have been developed and tested in the eastern United States. The objective of this research was to evaluate container and field performance of seven new complex hybrid pennisetums in the Pacific northwestern United States. Two completely randomized experiments with three replications were conducted over 2 years (2010 and 2011) at two locations. We selected seven trispecific hybrid pennisetums resulting from interploid and interspecific crossing that were given accessions Tift 5, Tift 6, Tift 10, Tift 11, Tift, 13, Tift 15, and Tift 26. Experiment 1 evaluated container performance in Corvallis, OR, while Expt. 2 evaluated field performance in Aurora, OR. Size index (SI), growth form rating, and color rating were collected and analyzed separately by location. In the container study, significant differences were observed among selections for growth form in 2010 and color ratings in both 2010 and 2011. In 2010, Tift 6, Tift 11, Tift 13, and Tift 15 had the highest growth form rating. For color rating, Tift 5, Tift 10, and Tift 26 were among the four highest rated selections in both years. In the field study, Tift 5, Tift 10, Tift 11, and Tift 26 had the highest SI when data were pooled over the 2 years, but all selections reached acceptable size for landscape use during both years of the study. Similarly, there were color differences among selections with Tift 5, Tift 10, Tift 15, and Tift 26 being highest rated. None of the selections survived below winter temperatures of −5 °C at either location during either year of the study. Our evaluations indicate that these selections have potential in the Pacific northwestern United States as annuals. Differences in complex hybrid pennisetums were observed in SI, growth form rating, and color rating. These differences demonstrated the variation among selections and will allow producers to choose desired traits based on market preference.