Search Results

You are looking at 1 - 10 of 19 items for

  • Author or Editor: Brian Schwartz x
Clear All Modify Search
Full access

David Jespersen and Brian Schwartz

Drought avoidance is dictated by a collection of traits used to maintain tissue hydration levels and turgidity during water-limited conditions. These traits include deeper and more extensive rooting and the closure of stomata to limit the transpiration of water from leaves. Zoysiagrasses are a group of warm-season turfgrasses, including Zoysia japonica and Zoysia matrella, that are valued for their turfgrass quality; however, they are susceptible to drought relative to other warm-season turfgrass species. The objectives of the study were to determine 1) differences in drought avoidance among a collection of zoysiagrasses and 2) which drought avoidance traits contributed to these differences. Fifteen zoysiagrass genotypes were exposed to either drought or control conditions in a greenhouse environment. Overall performance was assessed by evaluating turfgrass quality and percentage green cover. Drought avoidance was estimated by measuring leaf hydration levels and drought avoidance traits [including stomatal conductance (g S)]; root traits such as total root biomass, specific root length (SRL), and root length density (RLD) were measured. Compared with commercial cultivars Meyer, Palisades, or Zeon, some experimental genotypes maintained greater turfgrass quality during drought, with experimental genotype ‘09-TZ-54-9’ having a quality rating of 7.8 after 20 days of drought compared with 5.3 in ‘Zeon’, 5.2 in ‘Meyer’, and 5.0 in ‘Palisades’. A range of belowground traits such as root biomass was also found to be associated with drought avoidance, with experimental ‘09-TZ-53-20’ having 1.03 total grams, and 2.39 total grams in ‘10-TZ-1254’, compared with 1.14, 1.66, and 3.44 total grams in ‘Meyer’, ‘Zeon’, and ‘Palisades’, respectively. Significant differences in drought avoidance were found among the 15 genotypes, with both belowground rooting traits and aboveground factors affecting transpiration influencing plant performance.

Open access

Lisa L. Baxter and Brian M. Schwartz

Bermudagrass (Cynodon spp.) is the foundation of the turfgrass industry in most tropical and warm-temperate regions. Development of bermudagrass as a turfgrass began in the early 1900s. Many of the cultivars commercially available today have been cooperatively released by the U.S. Department of Agriculture Agricultural Research Service (USDA-ARS) and the University of Georgia at the Coastal Plain Experiment Station in Tifton, GA.

Open access

Wayne W. Hanna and Brian M. Schwartz

Open access

Wayne W. Hanna and Brian M. Schwartz

Free access

Karen R. Harris-Shultz, Brian M. Schwartz and Jeff A. Brady

The release of the bermudagrass (Cynodon spp.) triploid hybrid ‘Tifgreen’ revolutionized southeastern U.S. golf course greens. Off-types within this cultivar began to be identified soon after the initial plantings, and through the last 50 years, many of the best performing off-types have been released as new cultivars. Examination of some of the most popular somatic mutants with a new set of 47 simple sequence repeat (SSR) markers and 23 previously discovered genomic SSR markers identified five polymorphic fragments (as compared with ‘Tifgreen’) among three cultivars, TifEagle, MiniVerde, and Tifdwarf. Each polymorphism appears to be a slight increase/decrease in microsatellite repeat number and the polymorphic fragments are unique for each cultivar. Two polymorphic fragments were identified that were unique to ‘Tifdwarf’, one polymorphic fragment was unique to ‘TifEagle’, and two polymorphic fragments were unique to ‘MiniVerde’. Furthermore, three of the five polymorphic markers display an additional allele only in the shoot tissue but not in the root tissue of ‘TifEagle’ and ‘Tifdwarf’. This finding suggests that ‘TifEagle’ and ‘Tifdwarf’ are somatic chimeras. This set of SSR markers identifies repeatable polymorphic fragments among multiple ‘Tifgreen’-derived cultivars and gives insight into the nature of the mutations that exist within ‘Tifgreen’.

Full access

Ryan N. Contreras, Jim Owen, Wayne Hanna and Brian Schwartz

Ornamental grasses such as fountaingrass or napiergrass, collectively called pennisetums, belong to the genus Pennisetum, which is a diverse genus with over 80 species adapted to a wide range of climatic regions and known for its drought tolerance. Breeding efforts have led to improvements such as more intense purple foliage color, disease resistance, and apparent sterility. These improved forms have been developed and tested in the eastern United States. The objective of this research was to evaluate container and field performance of seven new complex hybrid pennisetums in the Pacific northwestern United States. Two completely randomized experiments with three replications were conducted over 2 years (2010 and 2011) at two locations. We selected seven trispecific hybrid pennisetums resulting from interploid and interspecific crossing that were given accessions Tift 5, Tift 6, Tift 10, Tift 11, Tift, 13, Tift 15, and Tift 26. Experiment 1 evaluated container performance in Corvallis, OR, while Expt. 2 evaluated field performance in Aurora, OR. Size index (SI), growth form rating, and color rating were collected and analyzed separately by location. In the container study, significant differences were observed among selections for growth form in 2010 and color ratings in both 2010 and 2011. In 2010, Tift 6, Tift 11, Tift 13, and Tift 15 had the highest growth form rating. For color rating, Tift 5, Tift 10, and Tift 26 were among the four highest rated selections in both years. In the field study, Tift 5, Tift 10, Tift 11, and Tift 26 had the highest SI when data were pooled over the 2 years, but all selections reached acceptable size for landscape use during both years of the study. Similarly, there were color differences among selections with Tift 5, Tift 10, Tift 15, and Tift 26 being highest rated. None of the selections survived below winter temperatures of −5 °C at either location during either year of the study. Our evaluations indicate that these selections have potential in the Pacific northwestern United States as annuals. Differences in complex hybrid pennisetums were observed in SI, growth form rating, and color rating. These differences demonstrated the variation among selections and will allow producers to choose desired traits based on market preference.

Free access

Wayne W. Hanna, S. Kristine Braman and Brian M. Schwartz

Free access

Wayne W. Hanna, S. Kristine Braman and Brian M. Schwartz

Free access

Wayne W. Hanna, S. Kristine Braman and Brian M. Schwartz

Free access

Ryan N. Contreras, John M. Ruter and Brian M. Schwartz

Japanese-cedar [Cryptomeria japonica (L.f.) D. Don] represents an alternative to leyland cypress [×Cuprocyparis leylandii (A.B. Jacks. & Dallim.) Farjon] as an evergreen screen or specimen plant for landscapes. It performs well under a range of soil and environmental conditions but has been underused attributable, in part, to unsightly winter browning caused by photoinhibition. In previous studies, chance seedlings that did not exhibit winter browning were identified as tetraploids. The current study was conducted to induce polyploidy in japanese-cedar. Approximately 600 seedlings were sprayed with 150 μM oryzalin + 0.1% SilEnergy™ for 30 consecutive days under laboratory conditions. Two hundred thirty-seven seedlings with thickened and twisted leaves were selected, transplanted, and grown in a glasshouse for 120 days. Seedling ploidy levels were analyzed using flow cytometry 180 days after treatment (DAT), identifying 197 (83.1%) tetraploids, 22 (9.3%) cytochimeras, and 18 (7.6%) diploids. Morphology of induced tetraploids was similar to that previously described and provided a phenotypic marker during selection that was over 92% accurate. A random subset of 20 tetraploid individuals was analyzed 270 DAT and were found to contain only tetraploid cells in the leaves analyzed, confirming stability over this period. This study demonstrated the use of oryzalin for inducing tetraploids in japanese-cedar, which we predict will be effective in other gymnosperms.