Search Results

You are looking at 1 - 10 of 21 items for

  • Author or Editor: Brian Schwartz x
  • All content x
Clear All Modify Search
Full access

David Jespersen and Brian Schwartz

Drought avoidance is dictated by a collection of traits used to maintain tissue hydration levels and turgidity during water-limited conditions. These traits include deeper and more extensive rooting and the closure of stomata to limit the transpiration of water from leaves. Zoysiagrasses are a group of warm-season turfgrasses, including Zoysia japonica and Zoysia matrella, that are valued for their turfgrass quality; however, they are susceptible to drought relative to other warm-season turfgrass species. The objectives of the study were to determine 1) differences in drought avoidance among a collection of zoysiagrasses and 2) which drought avoidance traits contributed to these differences. Fifteen zoysiagrass genotypes were exposed to either drought or control conditions in a greenhouse environment. Overall performance was assessed by evaluating turfgrass quality and percentage green cover. Drought avoidance was estimated by measuring leaf hydration levels and drought avoidance traits [including stomatal conductance (g S)]; root traits such as total root biomass, specific root length (SRL), and root length density (RLD) were measured. Compared with commercial cultivars Meyer, Palisades, or Zeon, some experimental genotypes maintained greater turfgrass quality during drought, with experimental genotype ‘09-TZ-54-9’ having a quality rating of 7.8 after 20 days of drought compared with 5.3 in ‘Zeon’, 5.2 in ‘Meyer’, and 5.0 in ‘Palisades’. A range of belowground traits such as root biomass was also found to be associated with drought avoidance, with experimental ‘09-TZ-53-20’ having 1.03 total grams, and 2.39 total grams in ‘10-TZ-1254’, compared with 1.14, 1.66, and 3.44 total grams in ‘Meyer’, ‘Zeon’, and ‘Palisades’, respectively. Significant differences in drought avoidance were found among the 15 genotypes, with both belowground rooting traits and aboveground factors affecting transpiration influencing plant performance.

Open access

Gurjit Singh, Shimat V. Joseph, and Brian Schwartz

The fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), is an important pest of warm-season turfgrass species, including bermudagrass (Cynodon spp.). Bermudagrass is a popular turfgrass that is widely planted on golf courses, athletic grounds, and ornamental landscapes across the country and throughout the world. Spodoptera frugiperda infestation is often sporadic; however, when it does occur, damage can be severe. Host plant resistance against S. frugiperda can be a valuable tool for reducing or preventing the use of insecticides. Therefore, the objective of this study was to determine resistance against S. frugiperda in a few promising bermudagrasses. Fourteen experimental bermudagrass genotypes plus two control cultivars, ‘Zeon’ zoysiagrass (resistant control) and ‘TifTuf’ bermudagrass (susceptible control), were evaluated against S. frugiperda to determine host plant resistance in the laboratory. The results showed that the resistant control, ‘Zeon’ zoysiagrass, was more resistant than the other genotypes to S. frugiperda larvae. To determine the response of the experimental lines to S. frugiperda as compared with that of the controls, three indices were developed based on survival, development, and overall susceptibility. According to the susceptibility index, ‘13-T-1032’, ‘T-822’, ‘11-T-510’, ‘12-T-192’, ‘11-T-56’, ‘09-T-31’, ‘11-T-483’, and ‘13-T-1067’ were the top-ranked bermudagrasses. Among these, the responses of ‘13-T-1032’, ‘T-822’, ‘11-T-510’, ‘11-T-56’, ‘09-T-31’, and ‘11-T-483’ were comparable to that of ‘TifTuf’, and antibiosis was the underlying mechanism of resistance. Additionally, larval length, head capsule width, and weight were negatively associated with the days of pupation and adult emergence and positively associated with pupal length, thorax width, and weight. These results will help refine future breeding and with investigations of resistance against the fall armyworm.

Open access

Wayne W. Hanna and Brian M. Schwartz

Open access

Wayne W. Hanna and Brian M. Schwartz

Open access

Lisa L. Baxter and Brian M. Schwartz

Bermudagrass (Cynodon spp.) is the foundation of the turfgrass industry in most tropical and warm-temperate regions. Development of bermudagrass as a turfgrass began in the early 1900s. Many of the cultivars commercially available today have been cooperatively released by the U.S. Department of Agriculture Agricultural Research Service (USDA-ARS) and the University of Georgia at the Coastal Plain Experiment Station in Tifton, GA.

Free access

Wayne W. Hanna, S. Kristine Braman, and Brian M. Schwartz

Free access

Ryan N. Contreras, John M. Ruter, and Brian M. Schwartz

Japanese-cedar [Cryptomeria japonica (L.f.) D. Don] represents an alternative to leyland cypress [×Cuprocyparis leylandii (A.B. Jacks. & Dallim.) Farjon] as an evergreen screen or specimen plant for landscapes. It performs well under a range of soil and environmental conditions but has been underused attributable, in part, to unsightly winter browning caused by photoinhibition. In previous studies, chance seedlings that did not exhibit winter browning were identified as tetraploids. The current study was conducted to induce polyploidy in japanese-cedar. Approximately 600 seedlings were sprayed with 150 μM oryzalin + 0.1% SilEnergy™ for 30 consecutive days under laboratory conditions. Two hundred thirty-seven seedlings with thickened and twisted leaves were selected, transplanted, and grown in a glasshouse for 120 days. Seedling ploidy levels were analyzed using flow cytometry 180 days after treatment (DAT), identifying 197 (83.1%) tetraploids, 22 (9.3%) cytochimeras, and 18 (7.6%) diploids. Morphology of induced tetraploids was similar to that previously described and provided a phenotypic marker during selection that was over 92% accurate. A random subset of 20 tetraploid individuals was analyzed 270 DAT and were found to contain only tetraploid cells in the leaves analyzed, confirming stability over this period. This study demonstrated the use of oryzalin for inducing tetraploids in japanese-cedar, which we predict will be effective in other gymnosperms.

Free access

Karen R. Harris-Shultz, Brian M. Schwartz, and Jeff A. Brady

The release of the bermudagrass (Cynodon spp.) triploid hybrid ‘Tifgreen’ revolutionized southeastern U.S. golf course greens. Off-types within this cultivar began to be identified soon after the initial plantings, and through the last 50 years, many of the best performing off-types have been released as new cultivars. Examination of some of the most popular somatic mutants with a new set of 47 simple sequence repeat (SSR) markers and 23 previously discovered genomic SSR markers identified five polymorphic fragments (as compared with ‘Tifgreen’) among three cultivars, TifEagle, MiniVerde, and Tifdwarf. Each polymorphism appears to be a slight increase/decrease in microsatellite repeat number and the polymorphic fragments are unique for each cultivar. Two polymorphic fragments were identified that were unique to ‘Tifdwarf’, one polymorphic fragment was unique to ‘TifEagle’, and two polymorphic fragments were unique to ‘MiniVerde’. Furthermore, three of the five polymorphic markers display an additional allele only in the shoot tissue but not in the root tissue of ‘TifEagle’ and ‘Tifdwarf’. This finding suggests that ‘TifEagle’ and ‘Tifdwarf’ are somatic chimeras. This set of SSR markers identifies repeatable polymorphic fragments among multiple ‘Tifgreen’-derived cultivars and gives insight into the nature of the mutations that exist within ‘Tifgreen’.

Free access

Wayne W. Hanna, S. Kristine Braman, and Brian M. Schwartz