Search Results

You are looking at 1 - 10 of 56 items for

  • Author or Editor: Brian E. Whipker x
  • Refine by Access: All x
Clear All Modify Search
Full access

Brian E. Whipker and Ingram McCall

Plant growth retardant (PGR) foliar sprays of daminozide at 4,000 or 8,000 mg·L-1 (ppm) and paclobutrazol drenches of 2 or 4 mg a.i. per pot were applied to `Big Smile', `Pacino', `Sundance Kid', `Sunspot', and `Teddy Bear' pot sunflowers (Helianthus annuus L.) to compare their chemical height control. Plant height varied among the cultivars due to genetic variation. The percentage reduction in plant height from the untreated control only was significant at the PGR level, indicating similar responses of all five cultivars to each PGR rate. Paclobutrazol drenches at 2 mg and daminozide foliar sprays at 4,000 or 8,000 mg·L-1 reduced plant height by about 24% when compared to the control. Paclobutrazol drenches at 4 mg produced plants that were 33% shorter than the control. Plant diameter of `Big Smile', `Pacino', or `Sundance Kid' was unaffected by daminozide, whereas `Sunspot' plants were smaller than the controls. Paclobutrazol drenches at 2 or 4 mg decreased plant diameter for all cultivars except `Teddy Bear', with the reduction being greater as paclobutrazol drench rates increased. The number of inflorescence buds increased by ≥18% with the use of daminozide sprays, while paclobutrazol drenches at 2 or 4 mg had no effect when compared to the untreated control. Paclobutrazol drenches of 2 or 4 mg offer the economic advantage to growers of increased plant density on greenhouse benches, while plants treated with daminozide had an increased bud count but would require a greater amount of bench space.

Full access

Brian E. Whipker and Shravan Dasoju

Plant growth retardant (PGR) foliar sprays (in mg·L−1) of daminozide at concentrations from 1,000 to 16,000; paclobutrazol from 5 to 80; and uniconazole from 2 to 32 were applied to `Pacino' potted sunflowers (Helianthus annuus L.) to compare their effectiveness at chemical height control. Plants were grown in 650-mL or 1.2-L pots. When the first inflorescence started to shed pollen, number of days from seeding until anthesis, total plant height measured from the pot rim to the top of the inflorescence, inflorescence diameter, and plant diameter were recorded. There was no significant difference in plant height between `Pacino' plants grown in 650-mL or 1.2-L pots. Total plant height, plant diameter, inflorescence diameter, and days until flowering were significant for the PGR treatment main effect. Marketable-sized plants grown in the 1.2-L pots were produced with uniconazole concentrations from 16 to 32 mg·L−1 or with daminozide concentrations from 4,000 to 8,000 mg·L−1. Paclobutrazol foliar sprays up to 80 mg·L−1 had little effect, and higher foliar spray concentrations or substrate drench treatments may be needed to effectively control height.

Free access

Brian E. Whipker and Shravan Dasoju

Plant growth retardant (PGR) foliar spray treatments (mg•liter–1) of daminozide at 1000 to 16,000; paclobutrazol from 5 to 80; and uniconazole from 2 to 32 were applied to `Pacino' pot sunflowers (Helianthus annuus) to compare their effectiveness at chemical height control. When the first inflorescence opened, the number of days from seeding until flowering, total plant height measured from the pot rim to the top of the inflorescence, inflorescence diameter, and plant diameter were recorded. Total plant height, plant diameter, inflorescence diameter, and days until flowering were significant for the PGR treatment interaction. Marketable-sized plants grown in the 1.2-liter pots were produced with uniconazole concentrations between 16 and 32 mg•liter–1 or with daminozide concentrations between 4000 and 8000 mg•liter–1. Paclobutrazol foliar sprays up to 80 mg•liter–1 had little effect and higher concentrations or medium drench treatments should be considered.

Free access

Brian E. Whipker and P. Allen Hammer

Eight poinsettia (Euphorbia pulcherrima Wind.) cultivars (`Angelika White', `Celebrate 2', `Dark Red Hegg', `Jingle Bells 3', `Pink Peppermint', `Red Sails', `Supjibi', and `V-14 Glory') were grown in root medium amended with six triple superphosphate rates of 0.39,0.78, 1.55,3.11,4.66, and 6.21 kg P/m3. Root medium and foliar samples of `Supjibi' and `Celebrate 2' were sampled every 4 weeks, starting with the beginning of short days. At flowering, all eight cultivars were measured for diameter of the two largest bracts, number of bracts with burn, and plant height. Foliar P levels increased over the growing season for `Supjibi' with a reading of 0.9% at anthesis, but for `Celebrate 2', levels peaked 4 weeks before anthesis (0.8%). At triple superphosphate rates > 3.11 kgP/m3, plant height decreased, and there was a significant cultivar × treatment interaction for descreased bract diameter. The eight cultivars exhibited varying degrees of susceptibilities to bract-edge burn as the amount of P applied to the root medium increased, with `Dark Red Hegg', `V-14 Glory', and `Red Sails' having the highest burn incidence.

Free access

James L. Gibson and Brian E. Whipker

Current fertilizer recommendations for ornamental cabbage (Brassica oleracea var. acephala DC.) suggest applying 150 to 300 mg·L-1 N until the initiation of color development, after which fertilization should be reduced or discontinued. Because these plants are actively growing during cool weather when coloration is initiated, nutrient deficiencies may reduce overall plant quality. The objectives of this study were to investigate N to K ratios for plant growth of ornamental cabbage and the effects of continual and discontinued fertilization during the period of coloration. Fertilizing with 150 to 200 mg·L-1 N and 150 to 200 mg·L-1 K produced high-quality plants and provided sufficient tissue concentrations of N and K. Center-head coloration was not inhibited by N concentrations as high as 250 mg·L-1. Ceasing fertilization prior to center-head coloration resulted in the rapid depletion of N, P, and K concentrations in the lower foliage, leading to the appearance of deficiency symptoms and lower leaf loss. Plants were still actively growing as measured by increased shoot mass during the early stages of coloration; therefore, growers should continue to provide a complete analysis fertilizer at N concentrations ≥150 mg·L-1 until market date.

Full access

James L. Gibson and Brian E. Whipker

Vigorous osteospermum (Osteospermum ecklonis) cultivars Congo and Wildside received foliar sprays of daminozide or daminozide + chlormequat (Expt. 1). Both cultivars responded similarly to the plant growth regulator (PGR) treatments. Only a limited amount of plant height control occurred using 5,000 mg·L-1 (ppm) daminozide + 1,500 mg·L-1 chlormequat or 5,000 mg·L-1 daminozide + 3,000 mg·L-1 chlormequat. Flowering was delayed, phytotoxicity was observed, while peduncle length increased, suggesting that higher concentrations of daminozide or chlormequat may or not be effective at any concentration and may result in increased phytotoxicity. In Expt. 2, `Lusaka' received foliar sprays or substrate drenches of paclobutrazol or uniconazole. Foliar sprays ≤80 mg·L-1 paclobutrazol or ≤24 mg·L-1 uniconazole were ineffective in controlling plant growth. Substrate drenches of paclobutrazol (a.i.) at 8 to 16 mg/pot (28,350 mg = 1.0 oz) produced compact plants, but at a cost of $0.23 and $0.46/pot, respectively, would not be economically feasible for wholesale producers to use. Uniconazole drenches were effective in producing compact `Lusaka' osteospermum plants. Uniconazole drench concentrations of 0.125 to 0.25 mg/pot were recommended for retail growers, while wholesale growers that desire more compact plants should apply a 0.25 to 0.5 mg/pot drench. Applying uniconazole would cost $0.06 for a 0.25 mg drench or $0.12 for a 0.5 mg drench.

Free access

James L. Gibson and Brian E. Whipker

Ornamental cabbage and kale (Brassica oleracea var. acephala L.) plants of cultivars `Osaka White' and `Nagoya Red' were treated with paclobutrazol and uniconazole as foliar sprays or soil drenches. These treatments were compared to the industry standard of daminozide foliar sprays. Ten plant growth regulator (PGR) drench treatments (in mg a.i./pot) were applied 22 days after potting: paclobutrazol at 1 to 16 and uniconazole at 0.125 to 2. Thirteen PGR foliar sprays (in mg/L) were also applied: paclobutrazol at 5 to 80, uniconazole at 2 to 32, daminozide at 2500, 2500 (twice, with the second application occurring 14 days later), or 5000, and an untreated control. Applying drenches of paclobutrazol at 4 mg or uniconazole at 0.5 mg controlled height by 16 to 25%, but at the cost of $0.11 per pot would not be economically feasible for growers to use. Paclobutrazol foliar sprays at concentrations of up to 80 mg/L were ineffective in controlling plant height and diameter of either `Osaka White' or `Nagoya Red'. Uniconazole foliar sprays between 2 and 8 mg/L were effective in controlling height (by 19%) and diameter (by 15%) as daminozide foliar sprays of 2500 mg/L, sprayed twice, with a cost to the grower of $0.02 per pot.

Full access

Brian E. Whipker and P. Allen Hammer

Plant growth retardant (PGR) substrate drench treatments (mg a.i./1.5-L pot) of ancymidol at doses of 0.5 to 8, paclobutrazol from 1 to 16, and uniconazole from 0.125 to 2 were applied to tuberous-rooted dahlias (Dahlia variabilis Willd.) to compare their effectiveness for controlling height. When the first inflorescence opened, the number of days from potting until flowering, leaf canopy height, inflorescence height above the foliage, and plant diameter were recorded. Total height control achieved using PGRs was primarily due to reduced inflorescence height, rather than leaf canopy height. Paclobutrazol, ancymidol, and uniconazole at all doses reduced total plant height of the less-vigorous `Red Pigmy' by >21% compared to the untreated control, with a height of 43.5 cm for the untreated control plants. Marketable potted plants were produced with doses of 2 to 4 mg of paclobutrazol, 0.25 to 0.5 mg of uniconazole, or 0.5 mg of ancymidol. All paclobutrazol, ancymidol, and uniconazole doses reduced total plant height of the more-vigorous `Golden Emblem' by >11% compared to the untreated control, with a height of 82.1 cm for the untreated control. Marketable potted plants were produced with 4 to 8 mg of paclobutrazol, 0.5 to 1 mg of uniconazole, or 2 mg of ancymidol.

Free access

Shravan K. Dasoju and Brian E. Whipker

Drench applications of plant growth retardant paclobutrazol were applied at 2, 4, 8, 16, or 32 mg a.i./pot, plus an untreated control to pot sunflowers (Helianthus annuus cv. `Pacino') to determine its effect as a chemical height control. All paclobutrazol concentrations applied significantly reduced plant height by »27% when compared to the untreated control, but excessively short plants were observed at 16 and 32 mg a.i./pot. Plant diameter was also significantly decreased by »16% at 2 and 4 mg a.i./pot of paclobutrazol, when compared to the untreated control. Flower diameter decreased by »4% at 2 and 4 mg a.i./pot of paclobutrazol, but only concentrations ≥4 mg a.i./pot were significantly different from the untreated control. Paclobutrazol concentrations had no effect on days from potting to flowering. Drench concentrations of 2 and 4 mg a.i./pot of paclobutrozol produced optimum height control in relation to 16.5-cm-diameter pot size used.

Free access

Shravan K. Dasoju and Brian E. Whipker

Pot sunflowers (Helianthus annuus cv. `Pacino') were fertigated on ebband-fl ow benches with 100 or 200 mg·liter–1 of N to determine the influence of fertility level on plant growth and postharvest quality in interior conditions. The fertilization rates were held constant from potting until day 45, then the fertilization rates were continued, decreased, or ceased on day 45 and day 55, giving a combination of nine fertilization subtreatments. At bloom, the number of days from potting to flowering, plant height, plant diameter, flower diameter were recorded, and the root medium of five replicates per treatment were analyzed to determine the nutrient status. Five replicates of each treatments also were moved into interior conditions with artificial lighting and were graded 5, 10, and 15 days after moving to evaluate the postharvest quality. There was no significant difference among fertilizer treatments for the number of days to flower, plant height, or flower diameter. Plants fertilized with 100 mg·liter–1 N from potting until day 45, in combination with a ceasing of fertilization on day 55, had significantly better plant grades when compared to plants grown with 200 mg·liter–1 N. Plants fertigated with 100 mg·liter–1 N also had a longer postharvest life and the number of days before the flowers wilted were significantly longer. Good-quality plants with longer postharvest life were produced with 100 mg·liter–1 N and by terminating fertilization 55 days after potting.