Search Results

You are looking at 1 - 10 of 56 items for

  • Author or Editor: Brian E. Whipker x
  • All content x
Clear All Modify Search
Full access

Brian E. Whipker and Shravan Dasoju

Plant growth retardant (PGR) foliar sprays (in mg·L−1) of daminozide at concentrations from 1,000 to 16,000; paclobutrazol from 5 to 80; and uniconazole from 2 to 32 were applied to `Pacino' potted sunflowers (Helianthus annuus L.) to compare their effectiveness at chemical height control. Plants were grown in 650-mL or 1.2-L pots. When the first inflorescence started to shed pollen, number of days from seeding until anthesis, total plant height measured from the pot rim to the top of the inflorescence, inflorescence diameter, and plant diameter were recorded. There was no significant difference in plant height between `Pacino' plants grown in 650-mL or 1.2-L pots. Total plant height, plant diameter, inflorescence diameter, and days until flowering were significant for the PGR treatment main effect. Marketable-sized plants grown in the 1.2-L pots were produced with uniconazole concentrations from 16 to 32 mg·L−1 or with daminozide concentrations from 4,000 to 8,000 mg·L−1. Paclobutrazol foliar sprays up to 80 mg·L−1 had little effect, and higher foliar spray concentrations or substrate drench treatments may be needed to effectively control height.

Full access

Brian E. Whipker and Ingram McCall

Plant growth retardant (PGR) foliar sprays of daminozide at 4,000 or 8,000 mg·L-1 (ppm) and paclobutrazol drenches of 2 or 4 mg a.i. per pot were applied to `Big Smile', `Pacino', `Sundance Kid', `Sunspot', and `Teddy Bear' pot sunflowers (Helianthus annuus L.) to compare their chemical height control. Plant height varied among the cultivars due to genetic variation. The percentage reduction in plant height from the untreated control only was significant at the PGR level, indicating similar responses of all five cultivars to each PGR rate. Paclobutrazol drenches at 2 mg and daminozide foliar sprays at 4,000 or 8,000 mg·L-1 reduced plant height by about 24% when compared to the control. Paclobutrazol drenches at 4 mg produced plants that were 33% shorter than the control. Plant diameter of `Big Smile', `Pacino', or `Sundance Kid' was unaffected by daminozide, whereas `Sunspot' plants were smaller than the controls. Paclobutrazol drenches at 2 or 4 mg decreased plant diameter for all cultivars except `Teddy Bear', with the reduction being greater as paclobutrazol drench rates increased. The number of inflorescence buds increased by ≥18% with the use of daminozide sprays, while paclobutrazol drenches at 2 or 4 mg had no effect when compared to the untreated control. Paclobutrazol drenches of 2 or 4 mg offer the economic advantage to growers of increased plant density on greenhouse benches, while plants treated with daminozide had an increased bud count but would require a greater amount of bench space.

Free access

Brian E. Whipker and Shravan Dasoju

Plant growth retardant (PGR) foliar spray treatments (mg•liter–1) of daminozide at 1000 to 16,000; paclobutrazol from 5 to 80; and uniconazole from 2 to 32 were applied to `Pacino' pot sunflowers (Helianthus annuus) to compare their effectiveness at chemical height control. When the first inflorescence opened, the number of days from seeding until flowering, total plant height measured from the pot rim to the top of the inflorescence, inflorescence diameter, and plant diameter were recorded. Total plant height, plant diameter, inflorescence diameter, and days until flowering were significant for the PGR treatment interaction. Marketable-sized plants grown in the 1.2-liter pots were produced with uniconazole concentrations between 16 and 32 mg•liter–1 or with daminozide concentrations between 4000 and 8000 mg•liter–1. Paclobutrazol foliar sprays up to 80 mg•liter–1 had little effect and higher concentrations or medium drench treatments should be considered.

Free access

Brian E. Whipker and P. Allen Hammer

Field studies were conducted on the potential of annual statice as an outdoor cut-flower crop for the Midwestern United States. Data was collected on seven cultivars in 1989 and 42 in 1990. In 1989, total fresh stem weight, stem count, and average stem weight differed significantly among cultivars. Yellow cultivars had more stems harvested than the rose, apricot, and blue cultivars, but stems of the yellow cultivars weighed less. The number of stems harvested over time tended to be concentrated in the first 8 weeks after flowering begins. In 1990, the average stem fresh weight was significantly different among the apricot, blue, and rose cultivars, but the number of stems harvested was significantly different only between the blue and rose cultivars.

Free access

Brian E. Whipker and P. Allen Hammer

Chemical plant growth retardant (PGR) treatments (mg·liter–1) were applied as foliar sprays to three zonal geranium cultivars: chlormequat at 1500, applied two, three, and four times, a combination of chlormequat at 750 and daminozide at 1250, applied one and two times, and paclobutrazol applied once at 5, 10, 20, and 30; twice at 5, 10, and 15; and three times at 5, plus an untreated control. Two paclobutrazol drench treatments at 0.1 and 0.25 mg a.i. per pot were also applied. The results of the PGR applications were significant at the cultivar × treatment interaction for leaf canopy height and plant diameter. Paclobutrazol rates of 10 to 15 mg·liter–1 resulted in acceptable height control for `Medallion Dark Red' and `Aurora'. `Pink Satisfaction' is a less vigorous cultivar and lower paclobutrazol rates of 5 to 10 mg·liter–1 were more suitable. When the total concentration of the single and multiple applications were compared, no additional height control was realized with the multiple applications of paclobutrazol.

Free access

James L. Gibson and Brian E. Whipker

Current fertilizer recommendations for ornamental cabbage (Brassica oleracea var. acephala DC.) suggest applying 150 to 300 mg·L-1 N until the initiation of color development, after which fertilization should be reduced or discontinued. Because these plants are actively growing during cool weather when coloration is initiated, nutrient deficiencies may reduce overall plant quality. The objectives of this study were to investigate N to K ratios for plant growth of ornamental cabbage and the effects of continual and discontinued fertilization during the period of coloration. Fertilizing with 150 to 200 mg·L-1 N and 150 to 200 mg·L-1 K produced high-quality plants and provided sufficient tissue concentrations of N and K. Center-head coloration was not inhibited by N concentrations as high as 250 mg·L-1. Ceasing fertilization prior to center-head coloration resulted in the rapid depletion of N, P, and K concentrations in the lower foliage, leading to the appearance of deficiency symptoms and lower leaf loss. Plants were still actively growing as measured by increased shoot mass during the early stages of coloration; therefore, growers should continue to provide a complete analysis fertilizer at N concentrations ≥150 mg·L-1 until market date.

Free access

Brian E. Whipker and P. Allen Hammer

`Supjibi' poinsettias (Euphorbia pulcherrima Willd.) were grown hydroponically for 15 weeks in nutrient solutions with 100-15-100, 200-30-200, or 300-46-300 (in mg·L-1 of N-P-K) to determine nutrient uptake patterns and accumulation rates. Results indicate that increasing fertilization rates from 100 to 300 mg·L-1 of N and K did not significantly influence the plant dry mass or the nutrient concentration of P, K, Ca, Mg, Na, B, Cu, Fe, Mn, Mo, and Zn in poinsettias. NH4-N concentration in the leaves, stems, and roots were lowest with the 100-mg·L-1 N fertilization rate and increased as the N application rate increased to 200 and 300 mg·L-1. Leaf P concentration levels from 1 week after potting through anthesis were above 1.3%, which exceeds the recommended level of 0.9%. When the plant tissue dry mass for each fertilizer rate was transformed by the natural log and multiplied by the mean tissue nutrient concentration of each fertilizer rate, there were no significant differences among the three fertilization rates when the total plant nutrient content was modeled for N, P, or K. Increasing the fertilizer application rate above 100 mg·L-1 N and K and 15 mg·L-1 P decreased total plant content of Ca, Mg, Mn, and Zn and increased the total plant Fe content. The results of the weekly nutrient uptake based on the total plant nutrient content in this study suggests that weekly fertilization rates should increase over time from potting until anthesis. Rates (in mg) that increase from 23 to 57 for N (with 33% of the total N supplied in the NH4-N form), 9 to 18.5 for P, 19 to 57 for K, 6 to 15 for Ca, and 3 to 8 for Mg can be applied without leaching to poinsettias and produce adequate growth in the northern United States.

Full access

Brian E. Whipker and P. Allen Hammer

Plant growth retardant (PGR) substrate drench treatments (mg a.i./1.5-L pot) of ancymidol at doses of 0.5 to 8, paclobutrazol from 1 to 16, and uniconazole from 0.125 to 2 were applied to tuberous-rooted dahlias (Dahlia variabilis Willd.) to compare their effectiveness for controlling height. When the first inflorescence opened, the number of days from potting until flowering, leaf canopy height, inflorescence height above the foliage, and plant diameter were recorded. Total height control achieved using PGRs was primarily due to reduced inflorescence height, rather than leaf canopy height. Paclobutrazol, ancymidol, and uniconazole at all doses reduced total plant height of the less-vigorous `Red Pigmy' by >21% compared to the untreated control, with a height of 43.5 cm for the untreated control plants. Marketable potted plants were produced with doses of 2 to 4 mg of paclobutrazol, 0.25 to 0.5 mg of uniconazole, or 0.5 mg of ancymidol. All paclobutrazol, ancymidol, and uniconazole doses reduced total plant height of the more-vigorous `Golden Emblem' by >11% compared to the untreated control, with a height of 82.1 cm for the untreated control. Marketable potted plants were produced with 4 to 8 mg of paclobutrazol, 0.5 to 1 mg of uniconazole, or 2 mg of ancymidol.

Full access

James L. Gibson and Brian E. Whipker

Twenty-six ornamental cabbage and kale (Brassica oleracea var. acephala) cultivars were grown in 8-inch (20.8-cm) diameter pots during Fall 1998 to classify their foliage traits and determine their response to the plant growth regulator (PGR) daminozide. Cultivar vigor was classified by height. Foliage characteristics were described and cultivars of ornamental cabbage, notched ornamental kale, and curly ornamental kale were selected for retail or wholesale markets based on the shortest number of days until a significant center color change, the largest center color diameter, and attractive foliage characteristics. Two cultivars treated with 2,500 ppm (mg·L-1) daminozide and eight cultivars treated with 5,000 ppm were significantly smaller in height compared to nontreated plants. Plants were treated 6 weeks after sowing, and the response to the PGRs may have been diminished by the age of the plant. Therefore, to further investigate PGR efficacy, seven outstanding cultivars selected in 1998 were treated with 5,000 ppm daminozide or 5 ppm uniconazole 14 days after potting (4 weeks after sowing) in Fall 1999. Greater control was observed with daminozide at 5,000 ppm in 1999 with a 13% smaller plant height as compared to 9% in 1998, when compared to the nontreated control. For greater height control, PGR applications to ornamental cabbage and kale should be applied 4 weeks after sowing.

Full access

James L. Gibson and Brian E. Whipker

Ornamental cabbage and kale (Brassica oleracea var. acephala) plants of cultivars Osaka White and Nagoya Red were treated with paclobutrazol and uniconazole as foliar sprays or substrate drenches. These treatments were compared to the industry standard of daminozide foliar sprays. Applying drenches of paclobutrazol (a.i.) at 4 mg/pot or uniconazole (a.i.) at 1 mg/pot (28,350 mg = 1.0 oz) resulted in 6% or 17%, respectively, shorter `Osaka White' plants while a 2 mg/pot paclobutrazol drench or a uniconazole drench at 0.25 mg/pot resulted in 25% shorter `Nagoya Red' plants. Although effective, the expense of substrate drenches for both plant growth regulators (PGRs) would not be economically feasible for growers to use. Paclobutrazol foliar sprays at concentrations of up to 80 mg·L-1 (ppm) were ineffective in controlling plant height and diameter of either `Osaka White' or `Nagoya Red'. A uniconazole foliar spray of 16 mg·L-1 resulted in 17% shorter `Nagoya Red' plants and 6% shorter `Osaka White' plants. A daminozide foliar spray of 2500 mg·L-1, sprayed twice, resulted in 21% shorter plants for both cultivars. Spraying daminozide would provide optimal height control for the retail grower. Although spraying daminozide twice controlled plant height and costs half the amount of an uniconazole spray at 16 mg·L-1, plant diameter was not affected with daminozide, therefore a wholesale grower who would desire a smaller diameter plant should use a uniconazole spray of 16 mg·L-1.