Search Results
You are looking at 1 - 10 of 29 items for
- Author or Editor: Brent L. Black x
Balancing vegetative growth with fruiting is a primary concern in strawberry (Fragaria ×ananassa Duch.) production. Where nursery plant selection and preconditioning are inadequate for runner control, additional approaches are needed. The gibberellin biosynthesis inhibitor prohexadione-Ca (commercial formulation Apogee) was tested over two seasons for suppressing fall runners of `Chandler' plug plants in a cold-climate annual hill production system. Prohexadione-Ca was applied as a foliar spray at active ingredient concentrations ranging from 60 to 480 mg·L-1, either as a single application 1 week after planting, or repeated at 3-week intervals. The lowest rate resulted in inadequate runner control, with some runners producing malformed daughter plants. Higher rates resulted in 57% to 93% reductions in fall runner numbers, with a concomitant increase in fall branch crown formation. There were no effects of the prohexadione-Ca treatments on plant morphology the following spring, and no adverse effects on fruit characteristics or yield. Chemical names used: prohexadione-calcium, calcium 3-oxido-4-propionyl-5-oxo-3-cyclohexene-carboxylate.
‘Montmorency’ tart cherry trees (Prunus cerasus L.) are grown commercially in the United States in low-density systems. Commercial tart cherry orchard design has not changed significantly over the past 50 years, but there is some variation from farm to farm in management strategies, including tree spacing, training, and pruning, and the resulting orchard production and turnover. Canopy dimensions and dynamics are important considerations for evaluating and improving orchard management strategies but are not well documented for tart cherry systems. Current orchard design and canopy management strategies were surveyed along a gradient of orchard age across five commercial farming operations in Utah. Trunk cross-sectional area and various canopy dimensions, including spread and volume, were quantified to capture tree size and canopy architecture. The survey indicated a surprising lack of deviation in orchard design in the region over the last several decades with higher variation among blocks within a farm than across farms. As a result, the survey revealed trends in tree growth and canopy structure across the range in orchard ages despite differences in management approaches of the surveyed farms. These trends were useful in illustrating canopy development and space fill. Tree age between 11 and 15 years after planting was determined to represent a transition between establishment and mature growth, where canopies filled available row space and began experiencing senescing canopy structure. Based on the distribution of ages captured in the survey, a significant number of orchards in Utah are at an age range of 11–15 years, perhaps contributing to superior yields per land area reported for the region. The confluence of space-fill and canopy development described in this study highlights a critical period for tart cherry orchard management at the transition of canopy establishment and maturity. These baseline dynamics will provide benchmarks for evaluating strategies for refining and improving orchard management systems for tart cherry in the Intermountain West region.
Mature tart cherry (Prunus cerasus L. ‘Montmorency’) trees in a commercial orchard were subjected to irrigation deficits from pit hardening to harvest during the 2007 and 2008 seasons. Irrigation treatments ranged from 30% to 100% of a commercially managed application rate during the deficit period. Midday stem water potential measurements were significantly different among treatments before harvest. However, fresh weight yield at harvest did not differ significantly among irrigation treatments in either year (P = 0.64). In 2008, the amount of undersized fruit eliminated during packout was significantly higher in the treatments replacing 30% and 47% of the commercial irrigation level (P < 0.001), but only amounted to 2.0% and 1.4% of total yields, respectively. This small increase in undersized fruit did not significantly affect packout. Soluble solids concentration and chroma of intact fruit increased with the severity of the irrigation deficit and were inversely correlated with fruit water content.
Highbush blueberry plants require low-pH, well-drained sandy soils. To increase the range of sites available for highbush blueberry production, by-products were tested as constituents in soilless media and as soil amendments. By-products, including coal ash, municipal biosolid compost, leaf compost, and acid peat, were combined in different proportions and compared to Berryland sand (alone) and Manor clay loam (alone and compost-amended) for a total of 10 media treatments. The pH of all treatment media was adjusted to 4.5 with sulfur. One-year-old tissue-cultured plants of `Bluecrop' and `Sierra' were planted in 15-L pots containing the pH-adjusted treatment media in 1997, producing their first substantial crop in 1999. For the 1999 crop, ripe fruit was harvested at weekly intervals over 5 weeks. ANOVA for yield indicated a significant cultivar × media interaction. `Bluecrop' appeared more sensitive to media treatment as yields on Manor clay loam were 80% less than on Berryland sand. Yields of `Bluecrop' on coal ash-compost mixes were similar to that of Berryland sand, and 1:1 coal ash:compost mixes produced significantly higher yields than did the 3:1 mixes. Yield of `Sierra' on Manor clay loam was 41% less than on Berryland sand, and plants growing on soilless mixes yielded 17% to 58% more than those on Berryland sand. `Bluecrop' fruit size was greatest for Berryland sand, but did not differ significantly among coal ash-compost mixes. For all media treatments, `Sierra' fruit size was inversely correlated with yield. Fruit from `Bluecrop' plants on coal ash-compost mixes ripened slightly earlier than on Berryland sand, but ripening date of `Sierra' did not vary significantly with soil treatment. The potential for employing these by-product mixes in small-scale commercial blueberry production will be discussed.
Bottom ash from a coal-fired power plant and two composts were tested as components of soil-free media and as soil amendments for growing highbush blueberry (Vaccinium corymbosum L.). Combinations of ash and compost were compared to Berryland sand, and Manor clay loam, and compost amended Manor clay loam. The pH of all treatment media was adjusted to 4.5 with sulfur at the beginning of the experiment. In 1997, plants of `Bluecrop' and `Sierra' were planted in 15-dm3 pots containing the pH-adjusted treatment media. The first substantial crop was harvested in 1999. At the end of the 1999 season, one half of the plants were destructively harvested for growth analysis. The remaining plants were cropped again in 2000. Yield and fruit size data were collected in both seasons, and leaf and fruit samples were collected in 1999 for elemental analysis. The presence of coal ash or composted biosolids in the media had no detrimental effect on leaf or fruit elemental content. Total growth and yield of both cultivars was reduced in clay loam soil compared to Berryland sand, whereas growth and yield of plants in coal ash-compost was similar to or exceeded that of plants in Berryland sand.
Precocious varieties of highbush blueberry (Vaccinium corymbosum L.) may overcrop during the first few seasons in the fruiting field, adversely affecting plant establishment. Reducing or preventing bloom in the nursery and during establishment would be beneficial in preventing early cropping and reducing the risk of infection by pollenborne viruses. We investigated the efficacy of foliar applications of GA4+7 for suppressing flower bud initiation in blueberry. One-year-old rooted cuttings of ‘Bluecrop’ were obtained from a commercial nursery and established in 11-L pots at the Philip E. Marucci Blueberry and Cranberry Research Center, Chatsworth, N.J. Three separate experiments were conducted over three seasons with ‘Bluecrop’ (and ‘Duke’ in 2005) highbush blueberry where foliar applications of GA4+7 were made at concentrations ranging from 50 to 400 mg·L−1 a.i., with timing treatments ranging from 7 July to 15 Sept., with 10 replicate plants per treatment. Floral and vegetative buds were counted the following spring. In the first study, the greatest degree of flower bud suppression resulted from applications at 400 mg·L−1 repeated weekly from 7 July to 1 Sept. However, these treatments also reduced total vegetative bud number and plant height. In the two subsequent studies, the largest treatment effect resulted from three weekly applications in late August and early September, where flower bud numbers were suppressed by 70% to 85% for ‘Bluecrop’ and 95% for ‘Duke’ while total vegetative growth was unaffected.
Temperate woody perennials produce proteins in the stem for seasonal nitrogen (N) storage. In Populus species, this seasonal N storage occurs primarily as a 32-kDa Bark Storage Protein (BSP), which can accumulate to 50% of total bark proteins during the winter. Plants of the Populus tremula × Populus alba (clone 717) were transformed with the BSP cDNA in antisense orientation (fused to a constitutive promoter), and regenerated lines were screened. Several independent antisense-BSP (A-BSP) lines were selected, which, after 4 weeks of SD photoperiod, showed 70% to 90% reduction in total BSP accumulation compared to the wild-type (WT). A series of experiments were conducted to compare LD growth of one A-BSP line to that of the WT. A-BSP plants showed reduced growth at both 5 and 50 mM ammonium nitrate fertilization. However, the higher N rate eventually resulted in toxicity in WT, but not in A-BSP plants. A-BSP plants grown hydroponically (0.5x Hoagland1s) showed altered partitioning with reduced stem length and increased leaf area (Leaf:stem dry-weight ratios were 14.8 and 20.9 for ABSP and WT, respectively). Partitioning to the roots was not different between A-BSP and WT. Proposed functions of BSP in seasonal and LD nitrogen metabolism will be discussed.
High tunnels have been used successfully in many areas of the world to extend the growing season for numerous crops. However, very little research has been conducted to evaluate the season extension benefits offered by high tunnels for small fruit crops in high-elevation growing areas such as the Intermountain West region of the United States. The use of high tunnels was investigated in North Logan, UT (lat. 41.766 N, elev. 1405 m, 119 freeze-free days) to extend the growing season for June-bearing strawberries. Growing systems included a fall-planted annual hill system and vertical growing systems in two different orientations. Optimum planting date for each system was determined by transplanting ‘Chandler’ plugs at 2-week intervals over 10 weeks. For the second year of the study, a field planting was also included. Over two seasons, the optimum planting dates were approximately the first week of September. The vertical systems were more susceptible to winter injury likely resulting from the temperature extremes in the root zone. Where winter injury was prevented, the vertical systems had higher yields per tunnel area than the in-ground system, but yield increases did not compensate for higher construction and management costs. The production window for the in-ground high tunnel planting was ≈4 weeks earlier than the field-grown plants and increased profitability by $13/m2 of tunnel area.
Anticipating the phaseout of methyl bromide, the USDA-ARS small fruit breeding program at Beltsville, Md., discontinued soil fumigation in strawberry breeding and selection trials in the mid 1990s. To address resulting weed and pathogen pests, a modified or advanced matted row system was developed. This system uses matted row-type culture, established on raised beds with subsurface drip irrigation and organic mulch. The mulch is the residue of a killed cover crop that fixes some nitrogen and provides an economical, biodegradable mulch for suppressing weeds and reducing erosion. Since 1996, the small fruit breeding program has conducted replicated performance trials on both advanced matted row and a regional adaptation of annual hill plasticulture. Both of these systems were managed without methyl bromide fumigation or fungicide application. Data from these trials were used to compare advanced matted row and plasticulture for yield, fruit quality and harvest season. Yield for the two systems was genotype dependent, and the advanced matted row system had later production and slightly lower fruit quality.