Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Blair L. Waldron x
Clear All Modify Search

With the exception of the undesirable characteristic of summer dormancy and the accompanying low aesthetic value, crested wheatgrass has many desirable characteristics in semiarid environments, making it a promising candidate for lower water use turf. Using a population of 27 half-sib families, this study characterized the underlying genetics of turf quality (based on a 1–9 rating scale) of crested wheatgrass and compared the performance of crested wheatgrass turf with traditional control cultivars (‘Cody’ buffalograss, ‘Gazelle’ tall fescue, ‘Manhattan 3’ perennial ryegrass, and ‘Midnight’ Kentucky bluegrass) over 2 years under space-planted conditions. Heritability estimates were generally high (h2 = 0.44 to 0.84) and suggested a strong additive genetic component for crested wheatgrass turf quality throughout the summer months. Genotypic correlations among the monthly turf quality scores were very high (greater than 0.90) indicating a strong commonality for the genetics underlying turf quality during any point in the growing season. Thus, a breeding program aimed at improving turf quality in this population of crested wheatgrass would stand a good chance for success. However, primarily as a result of summer dormancy, the crested wheatgrass turf performed poorly compared with the control cultivars during late spring and early summer. Turf quality scores in early July were ≈3 for the crested wheatgrass half-sib families compared with scores between 5 and 6 for the traditional turf species. Thus, crested wheatgrass, for the near future, will likely be a viable turf candidate only in situations in which turf aesthetics are secondary to a desire for low-input requiring species.

Free access

As competition for water resources in areas of western North America intensify as a result of increasing human populations, the sustainability of turfgrass irrigation with limited water resources is questionable. A potential part of the solution is the use of recycled wastewater for landscape irrigation. However, as a result of high levels of salt, successful irrigation with recycled wastewater will likely need to be coupled with selection for increased salinity tolerance in turfgrass species. Additionally, salinity-tolerant turfgrass will allow production on soils with inherently high salt levels. The study described here characterized the relative salinity tolerance of 93 accessions of Poa germplasm from the USDA National Plant Germplasm System (NPGS). Control cultivars of tall fescue [Lolium arundinaceum (Schreb.) S.J. Darbyshire], perennial ryegrass (Lolium perenne L.), and kentucky bluegrass (Poa pratensis L.) were also evaluated for comparison. Kentucky bluegrass accessions exhibited a wide range of LD50 (salinity dosage necessary to kill 50% of plants) values from 811 ECdays (PI 369296 from Russia) to 1922 ECdays (PI 371768 from the United States). Five kentucky bluegrass accessions exhibited salinity tolerance equal to or better than that of the tall fescue (LD50 = 1815 ECdays) and perennial ryegrass (LD50 = 1754 ECdays) checks. Thus, there is sufficient variation within this species to develop bluegrass with substantially higher salinity tolerance.

Free access