Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Bing Li x
Clear All Modify Search

Increasing commercial use of controlled release fertilizer (CRF) has prompted the need to predict N release simply and viably in the greenhouse environment. Two CRFs were tested, i.e., P40d and P100d by incubating them for 40 or 100 days either in static water at 10, 15, 20, 25, and 35 °C or in the soil of vegetable plots in a greenhouse lacking temperature controls. Cumulative nitrogen release (CNR) from a CRF was represented by a parabola curve and significantly affected by the incubation temperature. A method to calculate N m (the maximum N release percentage from CRF) was established using a first-order kinetic equation and the method of least squares. N m was 90.9% to 99.9% for P40d and 72.1% to 87.1% for P100d at 10–35 °C, respectively. A relationship function between the N release rate and naturally fluctuating greenhouse soil temperatures was established using the activation energy of the N release reaction. Then a model was constructed with field temperature as the variable to predict N release throughout the entire greenhouse crop production season. The value of ψ representing a property of the coating material of a CRF is 1.0 for the release period of the CRF of 35–55 days and 1.2 of 80–120 days. We validated the model using two seasons of greenhouse tomato, Solanum lycopersicum L., and cucumber, Cucumis sativus L., production data, and found that the error was less than 12% points. This indicated that the constructed model was sufficiently simple, practical, and accurate for use by growers, and fertilizer industry and regulatory personnel.

Free access

Thermosensitive genic male sterile (TGMS) lines are the core of two-line hybrid systems. MicroRNAs (miRNAs) play critical roles in plant growth and development. However, knowledge of regulation of anther development by miRNAs in TGMS eggplant (Solanum melongena) is largely unexplored. To investigate the mechanism underlying miRNA regulation of male sterility, we employed high-throughput small RNA sequencing in anther samples from the reverse TGMS line 05ms and the temperature-insensitive line S63 in eggplant, under high temperature and low temperature conditions. The 05ms line is sterile at low temperature and fertile at high temperature. A total of 166,273,427 raw reads were obtained, 143 known miRNAs from 42 miRNA families and 104 novel miRNAs were detected. Further, six differentially expressed miRNAs (DEMs) were identified, including three known (miR168b-3p, miR397–5p, and miR408) and three novel miRNAs (Novel_116, Novel_119, and Novel_97), which might be related to anther development. Moreover, the six DEMs were validated by quantitative real-time polymerase chain reaction and 892 target genes of which were predicted. Gene Ontology analysis of target genes revealed significant enrichment in the “copper ion binding,” “oxidation-reduction process,” and “oxidoreductase activity” terms. Kyoto Encyclopedia of Genes and Genomes analysis revealed that “plant hormone signal transduction” and “other glycan degradation” were enriched. In addition, we constructed regulatory networks comprising miRNAs, target genes, and important terms/pathways and found the miR397-5p was the most linked miRNA, down-regulated under low temperature. Our findings contribute to understanding of the roles of miRNA during anther development and provide the theoretical foundation for two-line hybrid breeding of eggplant.

Open Access

Advancements in electronic devices have led to increases in mental stress in modern adults, and removing this stress is crucial for mental health. The purpose of this study is to examine the psychophysiological benefits of contact with indoor plants. The effects of transplanting plants (horticultural activity) and work on a mobile phone (control activity) were assessed by blood pressure measurement, electroencephalography (EEG), the semantic differential method (SDM), and the State-Trait Anxiety Inventory (STAI). The SDM data showed that the subjects felt more relaxed, comfortable and natural, and experienced lower anxiety after the transplantation of plants than the control group. Participant’s total alpha and beta wave mean values increased over time during the transplantation task but decreased at the end of the control task. The mean meditation score was significantly higher after transplanting plants. Our study results indicate that contact with plants may minimize mental stress.

Free access