Search Results

You are looking at 1 - 10 of 14 items for

  • Author or Editor: Bin Zhang x
Clear All Modify Search

The objective of the present study was to consider the regulatory role of exogenous nitric oxide (NO) supplementation in response to chilling stress impose alterations on different physiological parameters in melon seedlings. Melon seedlings were treated with sodium nitroprusside (SNP, an NO donor), hemoglobin (a NO scavenger), NG-nitro-L-arginine methyl ester (an NO synthase inhibitor), and tungstate (a nitrite reductase inhibitor) under chilling stress conditions. The results showed that exogenous SNP improves the growth of melon seedlings under chilling stress conditions and ameliorates the harmful effects of chilling stress by increasing the levels of chlorophyll and soluble solutes, elevating the activity of sucrose phosphate synthase by enhancing the expression level of CmSPS. Moreover, exogenous NO significantly enhances the expression of genes and activities of antioxidant enzymes under chilling stress, resulting in lower reactive oxygen species accumulation. However, the protective effects of SNP are reversed by both NO scavenging and inhibition. Collectively, our results reveal that NO has the ability to ameliorate the harmful effects of chilling stress on melon seedlings by regulating carbohydrate metabolism and the antioxidant defense system.

Open Access

Gummy stem blight incited by the fungus Didymella bryoniae is a major disease of melons worldwide. The objectives of the present study were to critically evaluate melon (Cucumis melo L.) germplasm for resistance to D. bryoniae and to characterize the genetics of resistance in the resistant accessions. Two hundred sources of germplasm (plant introduction accessions, cultivars, breeding lines, landraces, and wild relatives) were screened against a single highly virulent isolate (IS25) of D. bryoniae in a plastic tunnel. The genetics of resistance to D. bryoniae was studied in three crosses between plant introductions 157076, 420145, and 323498, resistant parents that were fairly adapted (flowering, fruiting, powdery mildew tolerance) to Nanjing conditions, and plant introductions 268227, 136170, and NSL 30032 susceptible parents, respectively. Six populations of each cross (susceptible parent, resistant parent, F1, F2, the two reciprocal backcrosses) were analyzed for their responses to D. bryoniae. Seedlings in both studies were inoculated with a spore suspension (5 × 105 spores/mL−1) of D. bryoniae at the four to six true-leaf stages and assessed for leaf and stem damage at 7, 14, and 21 d postinoculation. Results of germplasm screening indicated most germplasms reported as resistant elsewhere were confirmed resistant under our conditions. However, some plant introductions identified as highly resistant elsewhere were susceptible under our conditions, the most interesting being plant introduction 482399. This plant introduction that was considered resistant was highly susceptible in our study. We also identified other sources of resistance not reported previously, for example, JF1; a wild Cucumis from the highlands of Kenya was rated highly resistant. Analysis of segregation of F1, F2, and backcross generations of the three crosses indicated that each of the three plant introductions carry a single dominant gene for resistance to the D. bryoniae.

Free access

Acer truncatum seeds are an excellent source of beneficial natural compounds, including high levels of unsaturated fatty acids (UFAs), that promote health. Recently, A. truncatum has emerged as an oil crop. Therefore, the transcriptomes of A. truncatum seeds at 70, 85, 100, 115, 145, 180 days after flowering (DAF) were analyzed to gain a better understanding of the transcriptional and translational regulation of seed development and oil biosynthesis. A total of 28,438 genes were identified, and 3069/2636, 3288/3438, 1319/2750, and 5724/5815 upregulated/downregulated genes were identified when comparing different samples with 85 DAF seeds. Sixteen lipid metabolism pathways with 754 differentially expressed genes (DEGs) were identified, including 34 DEGs associated with UFA biosynthesis. A phylogenetic analysis revealed that six putative fatty acid desaturase (FAD) genes clustered into five FAD groups. A quantitative real-time polymerase chain reaction analysis indicated that the temporal expression patterns of oil biosynthesis genes and transcription factors were largely similar to the RNA sequencing results. The results of this study will enhance the current understanding of oil metabolism in A. truncatum seeds and allow new methods of improving oil quality and seed yield in the future.

Open Access

Chinese flame tree (Koelreuteria bipinnata var. integrifoliola), a common ornamental tree in southern China, exhibits a variety of fruit colors among individual plants within the same cultivated field. In this study, 44 plants with different fruit colors were selected to investigate the impact of pigment composition on the coloration of fruit peels. The plants were divided into three groups based on the color phenotype of the fruit peel: red, pink, and green. The values of lightness (L*) were negatively correlated with redness (a*) and positively correlated with yellowness (b*). The correlations of chroma (C*) with the other color parameters differed among the three groups. In the pooled pink and red groups, C* was negatively correlated with both L* and b* and positively correlated with a*, whereas the opposite relationships were found in the green group. According to the pigment analysis, anthocyanins, chlorophylls, and carotenoids were detected in the fruit peels. Anthocyanins were found to be the main pigment responsible for the differences in fruit color among the various groups. The highest anthocyanin content of fruit peel was found in the red group, followed by the pink group; the lowest anthocyanin levels appeared in the green group. The major anthocyanin component in the fruit peels was identified as cyanidin 3-O-rutinoside. By classifying fruit peel color and determining pigment composition, this study provides a theoretical basis for further researching genetic control and regulation of anthocyanin biosynthesis genes on pigment accumulation and peel coloration of chinese flame tree.

Free access

Peach (Prunus persica) fruit emit more than 100 volatile organic compounds. Among these volatiles, γ-decalactone is the key compound that contributes to peach aroma. The final step in lactones biosynthesis is catalyzed by alcohol acyltransferases (AATs). In this study, five AAT genes were isolated in the peach genome, and the ways that these genes contribute toward the peach aroma were studied. The sequence analysis of the five AATs showed PpAAT4 and PpAAT5 are truncated genes, missing important residues such as HXXXD. The expressions of PpAATs were investigated to identify the roles in creating the peach aroma. The results indicated that only PpAAT1 is highly expressed during γ-decalactone formation. A functional survey of the five PpAATs, using the oleaginous yeast expression system, suggested that only PpAAT1 significantly increased the γ-decalactone content, whereas the other four PpAATs did not significantly alter the γ-decalactone content. Enzyme assays on PpAATs heterologously expressed and purified from Escherichia coli indicated that only PpAAT1 could catalyze the formation of γ-decalactone. All results indicated that PpAAT1 is a more efficient enzyme than the other four PpAATs during the γ-decalactone biosynthesis process in peach fruit. The results from this study should help improve peach fruit aroma.

Open Access

This study examined the ability to vegetatively propagate 1-year-old pecan (Carya illinoinensis) through the rooting of hardwood cuttings. Cuttings were treated with varying concentrations of different auxins and different combinations of media and ambient temperatures. Under different temperature conditions, all auxin treatments induced the rooting of cuttings but did not promote sprouting. The effectiveness of the induction of adventitious roots was as follows: 1-naphthalene acetic acid (NAA) > indole 3-butyric acid > indole 3-acetic acid. The base of the parent shoot treated by NAA at a concentration of 0.09%, planted in substrate with bottom heat was the most effective, with 82% rooting, 8.3 roots/cutting and root lengths of 7.3 cm. These findings suggested that auxin and substrate/air temperature differences are both indispensable in the process of adventitious roots formation in pecan. This study revealed that the propagation of hardwood cuttings derived from branches of 1-year-old pecan is possible.

Free access

Amplified fragment length polymorphism (AFLP) analyses were used to assess genetic diversity among 30 genotypes of watermelon [Citrullus lanatus (Thunb.) Mansf.] representing a broad genetic base, including breeding lines and commercial germplasm. Eight AFLP primer combinations selected from 64 primer combinations were polymophic. The polymorphism was 13.0% to 31.9% within the 28 cultivars examined, and 45.3% to 64.2% among all the genotypes. Each genotype could be successfully distinguished based on AFLP scoring. Cluster grouping of accessions based on the AFLP analysis was consistent with that from classification by pedigrees and ecotypes.

Free access

A full-length cDNA isolated from banana (Musa acuminata L. AAA group) fruit was named MaMDH, containing an open reading frame encoding 332 amino acids that represents the gene for cytoplasmic malic dehydrogenase (MDH). Sequence analysis showed that MaMDH shares high similarity with MDHs from castor bean (XP_002533463), tobacco (CAC12826), peach (AAL11502), and chickpeas (CAC10208). Real-time quantitative polymerase chain reaction (PCR) analysis of MaMDH spatial expression showed that it was expressed in all organs examined: roots, rhizomes, leaves, flowers, and fruits. The expression was the highest in flowers followed by the fruits and roots, whereas the rhizomes and leaves displayed the lowest expression levels. Real-time quantitative PCR revealed that MaMDH exhibited differential expression patterns in post-harvest banana fruits correlating with ethylene biosynthesis. In naturally ripened banana fruits, MaMDH expression was in accordance with ethylene biosynthesis. In accordance, for banana fruits treated with the ethylene analog 1-methylclopropene (1-MCP), MaMDH expression levels were inhibited and remained constant. After treatment with ethylene, MaMDH expression in banana fruits significantly increased with ethylene biosynthesis and peaked 3 days after harvest, which was 11 days earlier than that in naturally ripened banana fruits. These results suggest that MaMDH expression is induced by ethylene to regulate post-harvest banana fruits ripening.

Free access

The database of grape transcription factors (DGTF) is a plant transcription factor (TF) database comprehensively collecting and annotating grape (Vitis L.) TF. The DGTF contains 1423 putative grape TF in 57 families. These TF were identified from the predicted wine grape (Vitis vinifera L.) proteins from the grape genome sequencing project by means of a domain search. The DGTF provides detailed annotations for individual members of each TF family, including sequence feature, domain architecture, expression information, and orthologs in other plants. Cross-links to other public databases make its annotations more extensive. In addition, some other transcriptional regulators were also included in the DGTF. It contains 202 transcriptional regulators in 10 families.

Free access