Search Results

You are looking at 1 - 10 of 13 items for

  • Author or Editor: Beth Ann Workmaster x
Clear All Modify Search
Full access

Madeline Wimmer, Beth Ann Workmaster and Amaya Atucha

Training systems influence grapevine (Vitis sp.) size, shape, and canopy architecture, which ultimately affects yield and fruit composition. Cold climate interspecific hybrid grapes (CCIHG) have propelled the creation of a new and fast-growing grape and wine industry in the northeast and upper midwest of the United States. This study evaluated the effect of three training systems: high cordon (HC), midwire vertical shoot positioning (VSP), and modified Scott Henry (SH) on vine growth, yield, and fruit composition of four CCIHG cultivars, Brianna, Frontenac, La Crescent, and Marquette, during two growing seasons. The divided canopy training system SH increased the crop yield per meter of row in all cultivars relative to HC and VSP, despite reduction in crop size imposed by crop thinning in vines trained to SH. VSP-trained vines had lower yields compared with HC, and this was most evident during the second year of the study, as vines were still being trained when the study commenced. Despite the higher crop size associated with vines trained in a SH system, there were minimal differences in fruit soluble solid concentration (SSC), titratable acidity (TA), and pH at harvest time. No differences were observed in vine size, expressed as dormant cane pruning weights, among training systems possibly because of the control of vegetative vigor, especially in VSP-trained vines, through shoot positioning and summer pruning. CCIHG cultivars appear to have the capacity to support higher yields under SH and HC systems without compromising fruit quality; however, labor requirements involved in establishing and maintaining more complex training systems should be considered when selecting a training system for CCIHG cultivars.

Free access

Beth Ann A. Workmaster and Jiwan P. Palta

Little is known about the growth and development of the cranberry plant (Vaccinium macrocarpon Ait.) in response to air and soil temperatures in the spring. During this period, marked changes in cranberry bud hardiness are known to occur (from –20 to 0 °C), with the greatest changes occuring before bud elongation. The ability to predict changes in bud phenology and hardiness in relation to thermal time would be useful to growers in making frost management decisions. To establish a working growth model, canopy air and soil temperatures were continuously recorded in 1996, 1997, and 1998 in a cranberry bed (cv. Stevens) in central Wisconsin. In spring, samples of uprights were randomly collected from several locations within the bed and sorted according to a nine stage bud classification from tight bud to bloom. Controlled freezing tests were performed on uprights from the most advanced stages present that constituted 10% or more of a sample on a given date. Heat units were calculated from hourly canopy air temperatures. Despite the varied weather conditions over the3 years, a distinct relationship existed between the accumulation of heat units and the advancement of the crop. Spring 1998 was very early and resulted in the accumulation of more heat units before initial and advanced bud swell was observed compared to the other 2 years. Initial evaluation suggests that soil temperatures between 5 to 10 °C and photoperiod may play a role in modulating the effect of air temperatures. Further refinement of this model and the predictive value for frost hardiness changes will be discussed.

Free access

Beth Ann A. Workmaster and Jiwan P. Palta

Recent work in our laboratory has shown that pre- and postharvest applications of lysophosphotidylethanolamine (LPE) retard senescence processes in several fruit and flower species (apple, tomato, carnation). Banana was selected to develop a rapid bioassay to test the effects of LPE and other substances on various processes associated with senescence. Excised peel pieces from fully yellow `Grand Nain' bananas (Musa AAA) were incubated in petri dishes containing LPE solution (0, 25, 50, and 100 ppm) for 4 days. Fresh weight and ethylene production was measured daily. At the end of the experiment, tissue density, ion leakage, and soluble protein leakage was measured. Ion and soluble protein leakage was significantly lowered with 100 LPE. The 100 ppm LPE also significantly inhibited ethylene production after only 2 hours of treatment and this low level was maintained during the experiment. Peel tissue from the 100 ppm LPE remained firm and intact while tissue from the other treatments expanded and lost integrity. By day 2, peel from the 0, 25, and 50 ppm LPE gained significantly in fresh weight, while tissue treated with 100 ppm initially lost and then only slightly gained in fresh weight. Our results suggest that LPE is able to protect membrane function in senescence. Furthermore, these results provide evidence that LPE may also be retarding senescence by modulating the ethylene pathway.

Free access

Kevin R. Kosola and Beth Ann A. Workmaster

Although ericoid mycorrhizal fungi improve nitrogen (N) nutrition of cranberry (Vaccinium macrocarpon Ait.) and other Ericaceae in their native habitat, the prevalence of ericoid mycorrhizal colonization in cranberry has not been widely examined. The authors measured ericoid mycorrhizal colonization of cranberry root samples from 13 cultivars growing in cranberry beds in Wisconsin. Mycorrhizal colonization was present in all samples. Bed age had a slight but statistically significant negative effect on mycorrhizal colonization. Neither cultivar, bed substratum, nor soil pH had a significant effect on mycorrhizal colonization. Fungicide treatment for fruit diseases did not appear to affect mycorrhizal colonization of cranberry roots. Soil layering in the root zone incited by regular sanding had a significant effect on mycorrhizal colonization; colonization decreased with increasing depth in the root zone soil. Leaf litter was more decomposed in deeper soil layers, with a lower carbon-to-N ratio. Given the consistent presence of ericoid mycorrhizal fungi in cultivated cranberry, it is possible that they may play a role in N nutrition of the cranberry agroecosystem.

Free access

Beth Ann A. Workmaster and Jiwan P. Palta

`Stevens' cranberry (Vaccinium macrocarpon Ait.) terminal bud freezing stress resistance was assessed by nonlinear regression utilizing relative scoring of the post-thaw bud growth and development based on defined bud stages 2 weeks following controlled freezing tests. Bud stages tested were chosen based on a phenology profile from each sampling date throughout the spring season. Previous year (overwintering) leaf freezing stress resistance was evaluated after both 2 days (injury) and 2 weeks (survival). The Gompertz function with a bootstrapping method was used to estimate the tissues' relative freezing stress resistance as the LT50. Bud injury levels (LT50) were expressed as the temperatures at which the mean potential regrowth capability was impaired by 50%, as compared with the unfrozen controls. In leaves, the LT50 is the temperature at which 50% injury (2-day evaluation) or survival (2-week evaluation) was modeled to occur. Dramatic changes in terminal bud relative freezing stress resistance occurred both within and between the tight and swollen bud stages. These results clearly show that seasonal changes in freezing stress resistance do not necessarily parallel changes in crop phenology and bud development. These results indicate that some physiological, biochemical, or fine anatomical changes may explain the seasonal loss in hardiness within a visual bud stage. Previous year leaves may possess the ability to recover from freeze-induced injury, as leaf survival was found to be the most reliable indicator of cranberry leaf hardiness. Major shifts in phenology and bud and leaf hardiness coincided with the rise of minimum canopy-level air temperatures to above freezing. The nonlinear regression technique utilized made it possible to estimate LT50 with data points comprising half or more of the sigmoidal dose response curve. Our study provides precise and quantitative estimates of the cold hardiness changes in cranberry terminal buds and leaves in spring. From precise estimates we were able to define critical temperatures for the impairment of cranberry bud growth. This is the first systematic study of cranberry terminal bud cold hardiness and spring bud development in relation to changes in the soil and air temperatures under natural conditions. Our study shows that regrowth assessment of the cranberry upright inherently describes the composite effects of freezing stress on plant health.

Free access

Dana L. Baumann, Beth Ann Workmaster and Kevin R. Kosola

Wisconsin cranberry growers report that fruit production by the cranberry cultivar `Ben Lear' (Vaccinium macrocarpon Ait.) is low in beds with poor drainage, while the cultivar `Stevens' is less sensitive to these conditions. We hypothesized that `Ben Lear' and `Stevens' would differ in their root growth and mortality response to variation in soil water potential. Rooted cuttings of each cultivar were grown in a green-house in sand-filled pots with three different soil water potentials which were regulated by a hanging water column below a fritted ceramic plate. A minirhizotron camera was used to record root growth and mortality weekly for five weeks. Root mortality was negligible (2% to 6%). Whole plant relative growth rates were greatest for both cultivars under the wettest conditions. Rooting depth was shallowest under the wettest conditions. Whole-plant relative growth rates of `Ben Lear' were higher than `Stevens' at all soil water potentials. `Stevens' plants had significantly higher root to shoot ratios and lower leaf area ratios than `Ben Lear' plants, and produced more total root length than `Ben Lear' at all soil water potentials. Shallow rooting, high leaf area ratio, and low allocation to root production by `Ben Lear' plants may lead to greater susceptibility to drought stress than `Stevens' plants in poorly drained cranberry beds.

Free access

Beth Ann A. Workmaster, Michael Wisniewski and Jiwan P. Palta

Infrared video thermography has recently been used to visualize ice nucleation and propagation in plants. At the UW–Madison Biotron facility, we studied the formation of ice in various parts of fruit-bearing cranberry (Vaccinium macrocarpon Ait.) uprights. The fruits were at the blush to red stages of ripening. Samples were nucleated at –1 or –2°C with ice-nucleating-active bacteria (Pseudomonas syringae). Following nucleation, samples were cooled to –6°C in ≈1 hour. The following observations were made: 1) When nucleated at a cut end, ice propagated rapidly throughout the stem and into the leaves at a tissue temperature of about –4°C. However, ice did not propagate from the stem through the pedicel to reach the fruit. During the 1 hour after ice propagation in the stem, the fruit remained supercooled. 2) Within the duration of the experiment, leaves could not be nucleated from the upper surface. Ice from the lower leaf surface did nucleate the leaf, and ice propagated from the leaf to the stem and other leaves readily. 3) Both red and blush berries could only be nucleated at the calyx end of the fruit. 4) Red berries supercooled to colder temperatures and for longer durations than the blush berries. 5) In support of our previous studies, red berries were able to tolerate some ice in their tissue. These observations suggest that: 1) The upper leaf surface and the fruit surface (other than the calyx end) are barriers to ice propagation in the cranberry plant; and 2) at later stages of fruit ripening the pedicel becomes an ice nucleation barrier from the stem to the fruit. This may contribute to the ability of the cranberry fruit to supercool.

Free access

Beth Ann A. Workmaster, Jiwan P. Palta and Jonathan D. Smith

In Wisconsin, the cranberry plant (Vaccinium macrocarpon Ait.) is protected from freezing temperatures by flooding and sprinkle irrigation. Due to the high value of the crop, growers typically overprotect by taking action at relatively warm temperatures. Our goal is to provide recommendations for improved frost protection strategies by studying seasonal hardiness changes in different parts of the cranberry plant (leaves, stems, buds, flowers, fruit). Stages of bud growth were defined and utilized in the hardiness determinations. Samples were collected from mid-April to mid-Oct. 1996 and cuttings were subjected to a series of freezing temperatures in a circulating glycol bath. Damage to plant parts was assessed by visual scoring and observation, ion leakage, and evaluation of the capability to regrow. The following results were obtained: 1) Overwintering structures, such as leaves, stems, and buds, can survive temperatures <–18°C in early spring, and then deacclimate to hardinesses between 0 and –2°C by late spring. 2) In the terminal bud floral meristems are much more sensitive to freeze–thaw stress than are the vegetative meristems. 3) Deacclimation of various plant parts occurred within 1 week, when minimum canopy temperatures were above 0°C, and when the most numerous bud stage collected stayed the same (bud swell). 4) Fruits >75% blush can survive temperatures of –5°C for short durations. By collecting environmental data from the same location we are attempting to relate plant development, frost hardiness, and canopy temperatures (heat units).

Free access

Piero A. Spada, Beth Ann A. Workmaster and Kevin R. Kosola

Cranberry (Vaccinium macrocarpon) plants colonized with ericoid mycorrhizal fungi are capable of utilizing organic nitrogen sources that are unavailable to non-mycorrhizal plants. Despite the importance of mycorrhizal colonization in the nitrogen nutrition of wild cranberry, almost all measurements of cranberry nitrogen uptake and assimilation have been carried out with non-mycorrhizal plants. We have found that cranberry can be inoculated directly in solution culture. We cultured the ericoid mycorrhizal fungus Hymenoscyphusericaein liquid culture, harvested and rinsed hyphae, and added ≈200 mg fresh weight hyphae per rooted cranberry cutting (cv. Stevens) growing in a modified Johnson's solution. After 6 weeks, newly developed roots were most heavily colonized. We examined the effects of NH4 + concentration (5, 10, 20, 50, 100, and 500 μm NH4 +) in solution on colonization rates. Colonization (% root length) increased with increasing ammonium concentration in solution, with maximum colonization at 50 and 100 μm NH4 +; colonization was much lower at 500 μm NH4 +. Cranberry inoculated with H. ericaein solution culture will be used for analysis of the effects of mycorrhizal colonization on uptake kinetics of NH4 +, NO3 -, and amino acids.

Free access

Beth Ann A. Workmaster, Jiwan P. Palta and Michael Wisniewski

Infrared video thermography was used to study formation of ice in leaves, stems, and fruit of cranberry (Vaccinium macrocarpon Ait. `Stevens'). Ice formed on the plant surface at -1 or -2 °C by freezing of a droplet of water containing ice nucleation-active bacteria (Pseudomonas syringae van Hall). Samples were then cooled to a minimum of -8 °C. Observations on the initiation and propagation of ice were recorded. Leaves froze only when ice was present on the abaxial surface. Once initiated, ice propagated to the stem and then readily to other leaves. In both unripe and ripe fruit, ice propagation from the stem to the fruit via the pedicel was not observed. Fruit remained supercooled for up to 1 hour after ice was present in the stem. Fruit could only be nucleated when ice was present at the calyx (distal) end. Red (ripe) berries supercooled to colder temperatures and for longer durations than blush (unripe) berries before an apparent intrinsic nucleation event occurred. These observations provide evidence that leaves are nucleated by ice penetration via stomata. The ability of fruit to supercool appears to be related to the presence of barriers to extrinsic ice propagation at both the pedicel and fruit surface. Stomata at the calyx end of the fruit in the remnant nectary area may provide avenues for extrinsic ice nucleation.