Search Results
You are looking at 1 - 8 of 8 items for :
- Author or Editor: Bert M. Cregg x
- HortScience x
Growth and nutrient uptake of containerized fraser fir (Abies fraseri) seedlings in response to irrigation and fertilization was investigated for 2 years in a greenhouse experiment. Height and stem diameter growth increased 12% to 35% and 4% to 32%, respectively, with increased irrigation. There was an inverse relationship between irrigation and foliar nitrogen content and no irrigation effect on foliar phosphorus, potassium, magnesium, and manganese. Irrigation increased foliar calcium. Approximately 2.0% to 4.5% of applied nitrogen was lost through leaching. Increases in total biomass in high irrigation treatments were caused by higher root and stem biomass. Higher irrigation treatments increased nitrogen use efficiency (NUE) and assimilatory nitrogen use efficiency probably as a result of increase in carbon assimilation efficiency leading to increase in net primary productivity. There was no clear effect on the root weight ratio, but the index nitrogen availability per unit of foliage indicated a higher availability in plants receiving the lowest irrigation. This suggests that under water stress, the decrease in assimilation and NUE may be buffered by an increase in the plant's ability to provide nitrogen and other nutrients to various organs.
Landscape mulches are widely promoted to improve soil moisture retention, suppress weeds, and improve the growth of landscape plants. The objective of this project was to determine the effect of common landscape mulches (pine bark, hardwood fines, cypress mulch, color-enhanced ground pallets) on soil moisture, soil pH, weed control, and physiology and growth of landscape shrubs. Two additional treatments were not mulched: no mulch + no weed control and no mulch + weed control. Growth was measured on eight taxa (Euonymus alatus ‘Compactus’, Spiraea ×bumalda ‘Goldflame’, Weigela florida ‘Java red’, Taxus ×media ‘Runyan’, Thuja occidentalis ‘Golden Globe’, Hydrangea paniculata ‘Tardiva’, Viburnum dentatum ‘Synnestvedt’, Viburnum trilobum ‘Compactum’). Leaf gas exchange [net photosynthesis and stomatal conductance (g s)] were measured on Hydrangea paniculata, V. dentatum, and V. trilobum only. All mulches increased soil moisture compared with no mulch + weed control. There was no difference in soil pH or foliar nitrogen among treatments. All mulches, except cypress mulch, increased plant growth of most shrub taxa compared with no mulch without weed control. Mulches increased g S relative to no mulch without weed control. Photosynthetic rates of plants mulched with cypress mulch were less than the other mulches and not different from no mulch. Overall, the result suggests that, except for cypress mulch, the organic mulches tested are equally effective in improving growth of landscape plants. Reduced photosynthetic efficiency and growth of shrubs with cypress mulch suggest potential allelopathic effects.
We evaluated height growth, diameter growth, and survival of newly planted fraser fir and colorado blue spruce Christmas trees in southwest Michigan in response to mulch, weed control, and irrigation. Mulches included black polyethylene, white polyethylene, VisPore mulch mats, and wood chips. Seedlings were also established with or without raised beds and with or without complete weed control. Weed control (mulches or a combination of chemical weed control and hand weeding) improved survival and growth of both species after 2 years. Growth was similar for trees in irrigated plots or with wood chip mulch without irrigation. Polyethylene mulch increased growth compared with similar production systems with raised beds and bare ground. Among production systems, variation in growth and survival reflected patterns of predawn water potential and midday shoot gas exchange, suggesting that differences were largely related to plant moisture stress. White mulch improved growth relative to similar production systems with black mulch and wood chip mulch improved growth compared with similar production systems without irrigation. Overall, the ranking of magnitude of growth response effects were weed control > irrigation > mulch. These results underscore the importance of weed control for establishment and maintenance of high-quality Christmas tree plantations.
Irrigation scheduling based on plant daily water use (DWU) to conserve water without adversely affecting plant growth compared with a traditional irrigation rate was investigated for 25 common container-grown woody ornamentals. Ten different taxa were grown in 2006 and 2007 and five in 2008 in 10.2-L (No. 3) containers. Overhead irrigation was applied in four treatments: 1) a control irrigation rate of 19 mm (1.07 L per container) per application (control); 2) irrigation scheduled to replace 100% DWU per application (100DWU); 3) irrigation alternating every other application with 100% replacement of DWU and 75% DWU (100-75); and 4) irrigation scheduled on a three application cycle replacing 100% DWU followed by two applications of 75% DWU (100-75-75). Irrigation applications were separated by at least 24 h. Daily water use was calculated by measuring the difference in volumetric moisture content 1 h and approximately 24 h after irrigation. The three DWU treatments reduced total irrigation applied 6% to 75% compared with the control depending on treatment and species, except for Buddleja davidii ‘Guinevere’ in which total irrigation applied by the 100DWU, 100-75, and 100-75-75 treatments was 26%, 10%, and 5%, respectively, greater than the amount applied to the control. Final growth index [(plant height + width A + width B)/3] of all DWU treatments was greater than or equal to the control for all taxa. Forsythia ×intermedia ‘New Hampshire Gold’, Hydrangea arborescens ‘Dardom’, Hydrangea paniculata ‘Unique’, and Weigela florida ‘Wilma’ had higher water use efficiencies (estimated as the change in growth index per liter of water applied) at lower irrigation treatment volumes with no differences in growth index or growth index increase, indicating that further irrigation reductions may be possible without affecting growth. PourThru electrical conductivity of H. arborescens ‘Dardom’, Spiraea fritschiana ‘Wilma’, and Viburnum ×burkwoodii ‘Chenaultii’ measured in 2007 did not accumulate to damaging levels. Final plant size of all taxa under DWU treatments was the same or greater than the control and substantially less water was applied under DWU treatments except for B. davidii ‘Guinevere’.
The objectives of this study were to quantify irrigation volume, runoff volume and nutrient content, and plant growth of container-grown conifers when irrigated based on plant daily water use (DWU) vs. a standard irrigation rate. Four conifer taxa were grown in 10.2-L (no. 3) containers subjected to four irrigation treatments from 23 June to 16 Oct. 2009 and 6 June to 31 Oct. 2010. The taxa were: 1) Chamaecyparis obtusa Sieb. & Zucc. ‘Filicoides’, 2) Chamaecyparis pisifera (Sieb. & Zucc.) Endl. ‘Sungold’, 3) Thuja occidentalis L. ‘Holmstrup’, and 4) Thuja plicata D. Donn ‘Zebrina’. The four irrigation treatments were: 1) control application of 19 mm·d−1, 2) irrigation applied to replace 100% DWU (100 DWU) per day, 3) applications alternating 100% with 75% DWU in a 2-day cycle (100–75 DWU), and 4) a 3-day application cycle replacing 100% DWU the first day and 75% DWU on the second and third days (100–75–75 DWU). Irrigation treatments did not affect plant growth index {GI= [(H + WNS + WEW)/3]} in 2009. In 2010, GI of C. obtusa ‘Filicoides’ was greater for 100 DWU than the control plants. Seasonal total water applied for 100, 100–75, and 100–75–75 DWU was 22%, 32%, and 56% less, respectively, than the control amount of 117 L per container in 2009 (114 days) and 24%, 18%, and 24% less than the control amount of 165 L per container in 2010 (147 days). Scheduling irrigation based on DWU reduced runoff volumes and (nitrate-nitrogen) NO3 −-N and (phosphate-phosphorous) PO4 3−-P load compared with the control. Irrigating based on DWU reduced water application and runoff volumes and NO3 −-N and PO4 3−-P load while producing plants of equal or greater size than control plants.
Container production of landscape conifers, including pot-in-pot (PIP) production, is increasing relative to field production in the northern United States. Because much of the research on PIP has been performed in the southern United States, this study focused on characterizing the growth and physiological response of PIP-grown conifers to fertilizer and substrate to improve production for growers in northern climates. In May 2006, we potted 90 seedlings each of Abies fraseri, Picea glauca var. densata, P. pungens glauca, and Pinus strobus into 11.2-L containers. Substrate consisted of pine bark (B) and peatmoss (PM) in ratios of 90:10, 80:20 or 70:30 (vB:vPM). Trees were top-dressed with controlled-release fertilizer (15N–4P–10K) at rates of 0.25, 0.5, and 1.0 g of nitrogen per liter of container (g·L−1). After 2 years, growth response to substrate varied by species; however, all species grew as well or better in the 80:20 mix than in the other mixes. In response to fertilizer addition, adding 0.5 or 1 g N/L increased height growth compared with 0.25 g. Increasing the fertilizer rate from 0.5 g N/L to 1 g did not increase height growth. Foliar nitrogen increased with each fertilizer addition although height growth did not increase beyond 0.5 g·L−1, indicating possible luxury consumption. Furthermore, net photosynthesis rates of spruce trees declined with fertilization in the second year of the study, possibly as a result of increased water stress due to greater total leaf area per tree. Chlorophyll fluorescence was not consistently correlated with foliar nutrition. From a practical standpoint, results of the study indicate that 0.5 g N/L will provide adequate nutrition for these crops. A substrate mix of 80% bark:20% peatmoss produced maximal or near-maximal growth for all four species tested.
Container-grown woody ornamentals were irrigated according to a percentage of daily water use (DWU) or a traditional irrigation rate to evaluate plant growth, irrigation volume, runoff, and nutrient loss from each irrigation treatment. Deutzia gracilis Sieb. and Zucc. ‘Duncan’, Kerria japonica (L.) DC. ‘Albiflora’, Thuja plicata D. Don. ‘Atrovirens’, and Viburnum dentatum L. ‘Ralph Senior’ were grown in 10.2-L (# 3) containers under four overhead irrigation treatments: 1) a control irrigation rate of 19 mm per application (control); 2) irrigation scheduled to replace 100% DWU per application (100DWU); 3) irrigation alternating every other application with 100% replacement of DWU and 75% DWU (100–75); and 4) irrigation scheduled on a three-application cycle with one application of 100% DWU followed by two applications replacing 75% DWU (100–75–75). Applications were separated by at least 24 h. Total irrigation applied for the 100DWU, 100–75, and 100–75–75 treatments was 33%, 41%, and 44% less, respectively, than the total water applied by the control treatment of 123 L per container. Plants grown under the three DWU treatments had a final growth index greater than or equal to plants irrigated by the control treatment depending on species. Daily average runoff volumes from production areas irrigated with 100% and 75% DWU were 66% and 79% lower than average control runoff of 11.4 L·m−2·d−1 across all collection days. Quantity of NO3 –-N lost daily across all collection days for the 100% DWU and 75% DWU irrigation volumes averaged 38% and 59% less, respectively, than the control. Daily losses of PO4 3–- P quantities across all collection days under the 100% and 75% DWU volumes were 46% and 74% lower, respectively, compared with the control. Irrigating according to the DWU treatments used in this study reduced irrigation and runoff volumes and NO3 –-N and PO4 3–-P losses compared with a control of 19 mm per application while producing the same size or larger plants.
An aging American population may be less willing than a younger population to install and remove a live, fresh-cut evergreen tree in their home for Christmas celebrations. An alternative to using traditional, large, fresh-cut or potted Christmas trees could be forcing these evergreen species in a small (≈1-L) container that could be displayed on a tabletop. We initiated this study to determine consumer preferences and marketability for six evergreen tree species produced for tabletop display and used three decoration themes and three price points. We constructed a web-based survey in which 331 participants were compensated with a $5 e-coupon for viewing 27 photographs of tabletop trees and providing preference and use information. The conjoint model accounted for 91.2% of the variance and showed that consumers valued tree species as the most important attribute (61% of the tree value), with decoration color/theme the second most important feature (27%) and, last, price (12%). Black Hills spruce (Picea glauca var. densata (Moench) Voss) was the most preferred species overall, and red was the most preferred decoration theme. Logically, the lowest price point was the most preferred. However, price was the most important attribute for participants younger than 25 years. The importance of price decreased as participant age increased until age 60, when price became a more important component. With a cost of production of $5.45 and decoration and shipping estimated at an additional $4.00, the product could be a profit generator priced at any of the tested price points ($14.95 and above).