Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Benjamin Liang x
Clear All Modify Search

Magnetic Resonance Imaging (MRI) is currently considered as a nondestructive and noninvasive method for observing the distribution, concentration, and status of water in biological materials. However, effects of static magnetic fields of MRI systems on plant growth and development remain controversial. This study was conducted to investigate the water imbibition and radicle growth of Pisum sativum (cv. Little Marvel), Zea mays (cv. Pioneer 3379), and Glycine max (cv. Forrest) seeds oriented to four directions and exposed to six different magnetic field strengths commonly used in MRI systems.

Seeds were embedded in a water saturated synthetic foam medium, and were oriented, with respect to their hilum or embryo, to the east, south, west, or north. Seeds were then exposed to either 2, 4, 6, 8, 10, or 15 kilogauss static magnetic fields for 48 hours (water imbibition) or 54 hours (radicle growth).

The orientation of seeds and the magnetic field strengths had no effect on water imbibition or radicle growth of seeds tested. However, long term exposure retarded pea radicle growth in 2 KG treatment, enhanced soybean radicle growth in 10 KG treatment, but had no effect on corn radicle growth.

Free access

Nuclear Magnetic Resonance Imaging is currently being investigated as a nondestructively and noninvasively observing plant-water relationships, Researchers have not considered the effects of magnetic fields on plant growth and development. This study was conducted to investigate the effects of magnetic fields on seed water imbibition and radicle growth. Corn (cv. pioneer 3379), pea (cv. little marvel), and soybean (cvs. forrest and D86-4669) seeds were embedded in petri dishes with water saturated Smither's oasis porus foam, and were oriented for the East, South, West, and North. Seeds were exposed to either 1.5 Tesla or 1×10-10 Tesla static magnetic field for 48 hours. Changes in seed weights and radicle lengths were measured. Results showed that the strong magnetic field and seed orientations had no effect on the water imbibition rate. However, growth of corn and pea radicles was affected by the magnetic field. The 1.5 Tesla magnetic field enhanced the growth of corn radicle length, whereas it retarded the growth of pea radicles.

Free access

Nuclear Magnetic Resonance Imaging is currently being investigated as a nondestructively and noninvasively observing plant-water relationships, Researchers have not considered the effects of magnetic fields on plant growth and development. This study was conducted to investigate the effects of magnetic fields on seed water imbibition and radicle growth. Corn (cv. pioneer 3379), pea (cv. little marvel), and soybean (cvs. forrest and D86-4669) seeds were embedded in petri dishes with water saturated Smither's oasis porus foam, and were oriented for the East, South, West, and North. Seeds were exposed to either 1.5 Tesla or 1×10-10 Tesla static magnetic field for 48 hours. Changes in seed weights and radicle lengths were measured. Results showed that the strong magnetic field and seed orientations had no effect on the water imbibition rate. However, growth of corn and pea radicles was affected by the magnetic field. The 1.5 Tesla magnetic field enhanced the growth of corn radicle length, whereas it retarded the growth of pea radicles.

Free access

This study was carried out to determine the influences of planting date (June, July) and soil applications of Trichoderma harzianum (strain T-95) and a fungicide containing ethazole + thiophanate (BanrotR) on flower production of standard carnation cvs. Improved White and Tanga. The one-year production data showed that the fungicide treatment increased flower yield by 7.3% (33.5 flowers/m2) and 4.8% (23.3 flowers/m2) in Improved White and Tanga, respectively, for June planting. Improved White produced more flowers and fancy grades when planted in July as compared to June planting. Planting date did not influence either the yield or the flower quality in Tanga. The effectiveness of Trichoderma as a biological control agent on flower yield and quality was not evident. The patterns of weekly flower production for the two cultivars were determined and graphically illustrated.

Free access