Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: B.S. Baldwin x
  • All content x
Clear All Modify Search
Full access

K.L. Hensler, B.S. Baldwin, and J.M. Goatley Jr.

A bioorganic fiber seeding mat was compared to traditional seeding into a prepared soil to ascertain any advantages or disadvantages in turfgrass establishment between the planting methods. Bahiagrass (Paspalum notatum), bermudagrass (Cynodon dactylon), carpetgrass (Axonopus affinis), centipedegrass (Eremochloa ophiuroides), st. augustinegrass (Stenotaphrum secundatum), and zoysiagrass (Zoysia japonica) were seeded at recommended levels in May 1995 and July 1996. The seeding methods were evaluated under both irrigated and nonirrigated conditions. Plots were periodically rated for percent turf coverage; weed counts were taken about 4 weeks after study initiation. Percent coverage ratings for all grasses tended to be higher for direct-seeded plots under irrigated conditions in both years. Bermudagrass and bahiagrass established rapidly for both planting methods under either irrigated or nonirrigated conditions. Only carpetgrass and zoysiagrass tended to have greater coverage ratings in nonirrigated, mat-seeded plots in both years, although the percent plot coverage ratings never reached the minimum desired level of 80%. In both years, weed counts in mat-seeded plots were lower than in direct-seeded plots. A bioorganic fiber seeding mat is a viable method of establishing warm-season turfgrasses, with its biggest advantage being a reduction in weed population as compared to direct seeding into a prepared soil.

Full access

K.L. Hensler, B.S. Baldwin, and J.M. Goatley Jr.

A truly soilless turfgrass sod may be produced on kenaf-based (Hibiscus cannabinus L.) fiber mat that offers the integrity of field-cut sod without the use of mineral soil growing medium. This research was conducted to determine the feasibility of producing warm-season turfgrass sod on such a biodegradable organic mat. Seeded turfgrass plots contained 4.9 lb/1000 ft2 (24 g.m−2) of pure live seed planted on a 66-lb/1000 ft2 (325-g.m−2) organic fiber mat carrier placed atop either 66- or 132-lb/1000 ft2 (325- or 650-g.m−2) organic fiber mats. In an experiment using vegetative material, stolons were applied at rates of 16.4 ft3/1000 ft2 (0.82 L.m−2) over 132- or 198-lb/1000 ft2 (650- or 975-g.m−2) organic fiber mats and covered with a rayon scrim. All plots were placed on 6-mil black plastic. Nitrogen was applied at 0.9 lb/1000 ft2 (4.4 g.m−2) weekly in addition to a monthly micronutrient application. Bermudagrass (Cynodon σππ.) had quicker establishment than other grasses in the study, with stolonized and seeded plots achieving ≈100% coverage by 9 weeks in 1995 and 6 weeks in 1996, respectively. By 15 weeks after planting in 1995, the plot coverage ratings for seeded centipedegrass [Eremochloa ophiuroides (Munro) Hack. `Common'] and all stolonized grass plots of centipedegrass, zoysiagrass (Zoysia japonica Steud. `Meyer'), and St. Augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze `Raleigh'] were 91% or higher. The results were much less favorable in 1996 than 1995 due to a later planting date and an irrigation failure.

Free access

E.A. Baldwin, J.W. Scott, M.A. Einstein, T.M.M. Malundo, B.T. Carr, R.L. Shewfelt, and K.S. Tandon

The major components of flavor in tomato (Lycopersicon esculentum Mill.) and other fruit are thought to be sugars, acids, and flavor volatiles. Tomato overall acceptability, tomato-like flavor, sweetness, and sourness for six to nine tomato cultivars were analyzed by experienced panels using a nine-point scale and by trained descriptive analysis panels using a 15-cm line scale for sweetness, sourness, three to five aroma and three to seven taste descriptors in three seasons. Relationships between sensory data and instrumental analyses, including flavor volatiles, soluble solids (SS), individual sugars converted to sucrose equivalents (SE), titratable acidity (TA), pH, SS/TA, and SE/TA, were established using correlation and multiple linear regression. For instrumental data, SS/TA, SE/TA, TA, and cis-3-hexenol correlated with overall acceptability (P = 0.05); SE, SE/TA (P≤0.03), geranylacetone, 2+3-methylbutanol and 6-methyl-5-hepten-2-one (P = 0.11) with tomato-like flavor; SE, pH, cis-3-hexenal, trans-2-hexenal, hexanal, cis-3-hexenol, geranylacetone, 2+3-methylbutanol, trans-2 heptenal, 6-methyl-5-hepten-2-one, and 1-nitro-2-phenylethane (P≤0.11) with sweetness; and SS, pH, acetaldehyde, aceton, 2-isobutylthiazole, geranlyacetone, β-ionone, ethanol, hexanal and cis-3-hexenal with sourness (P≤0.15) for experienced or trained panel data. Measurements for SS/TA correlated with overall taste (P=0.09) and SS with astringency, bitter aftertaste, and saltiness (P≤0.07) for trained panel data. In addition to the above mentioned flavor volatiles, methanol and 1-penten-3-one significantly affected sensory responses (P = 0.13) for certain aroma descriptors. Levels of aroma compounds affected perception of sweetness and sourness and measurements of SS showed a closer relationship to sourness, astringency, and bitterness than to sweetness.