Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: B.D. Whitaker x
  • Refine by Access: All x
Clear All Modify Search
Free access

Steven W. Pechous, Bruce D. Whitaker*, and Christopher B. Watkins

Fruit of different apple cultivars vary widely in susceptibility to superficial scald. The genetic and biochemical factors involved in this variation are unknown. Conjugated trienol (CTol) oxidation products of alpha-farnesene have been linked with scald induction, and a high rate of farnesene synthesis in peel tissue of scald-prone apples early in storage is often associated with development of the disorder. Pre-storage treatment of apple fruit with 1-methylcyclopropene (1-MCP) inhibits the early burst of farnesene production and prevents scald, suggesting that ethylene induces transcription of genes involved in farnesene synthesis. We recently cloned a gene from apple peel tissue, AFS1, which encodes alpha-farnesene synthase, the last enzyme in the farnesene biosynthetic pathway. In this study, expression of AFS1 was compared in scaldsusceptible Law Rome (LR) and scald-resistant Idared (IR) apples at harvest and over 20 weeks of storage at 0.5 C. AFS1 transcript levels were closely correlated with accumulation of farnesene and CTols. In fruit of both cultivars, a sharp increase in AFS1 mRNA during the first 4 to 8 weeks of storage preceded a proportional rise in farnesene and a subsequent increase in CTols. However, maximum levels of AFS1 transcript, farnesene, and CTols were, respectively, 2.5-, 4-, and 33-fold greater in LR than in IR apples. Treatment of fruit with 1-MCP at harvest suppressed the increases in AFS1 transcript and farnesene early in storage, but AFS1 expression and farnesene synthesis recovered in LR fruit after 20 weeks. Scald incidence in LR apples after 20 weeks at 0.5 °C plus 1 week at 20 °C averaged 86%, whereas IR fruit had no scald. 1-MCP treatment reduced scald incidence in LR to <1%.

Free access

G.A. Picchioni, A.E. Watada, W.S. Conway, and B.D. Whitaker

Postharvest Ca infiltration delays senescence and improves storage quality of apple fruit, but the consequences on membrane lipid composition have received little evaluation. We studied changes in galactolipids (mono- and digalactosyl-diacylglycerol; MGDG and DGDG) and sterol conjugates (sterol glycosides and acylated sterol glycosides; SG and ASG) in `Golden Delicious' cortical tissue. Fruit were pressure-infiltrated with CaCl, at harvest (0, 2, or 4% w/v), stored for 6 months at 0C, and evaluated during subsequent exposure to 20C. MGDG, SG and ASG concentrations were greater in Ca-infiltrated fruit (CIF) than in control fruit. A 35-37% increase in ASG occurred during the first 7 days at 20C in CIF, when ASG decreased by 19% in control fruit. Ca infiltration may delay degradation of plastid membranes and increase sterol conjugation during apple fruit ripening.

Free access

G.A. Picchioni, A.E. Watada, W.S. Conway, B.D. Whitaker, and C.E. Sams

Postharvest CaCl2 pressure infiltration improves firmness and storage quality of apples but is still in the experimental stages. Its effectiveness could be increased if we had a better understanding of how Ca affects the tissue at the cellular level. `Golden Delicious' fruit were harvested from a commercial orchard and were pressure-infiltrated with CaCl2 (0%, 2%, or 4% w/v), stored for 6 months at 0C, and then for 7 days at 20C. Between harvest and the end of storage at 20C, the net breakdown of galactolipids and phospholipids decreased with increasing CaCl2 in infiltration solutions. During 0C storage, CaCl2-infiltrated fruit maintained greater concentrations of conjugated sterol lipids, and these lipid classes are thought to be closely associated with the plasma membrane. As membrane lipid alterations are viewed as a central factor in the senescence of fruits, Ca (from postharvest infiltration) may serve a major role in regulating fruit quality losses through its interactions with cell membranes.