Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: B. M. Hamilton x
Clear All Modify Search
Authors: and

A field study was conducted on TG1015Y onions (Allium cepa L.) grown in the Lower Rio Grande Valley of Texas. Treatments included two soil types (clay & loam), four harvest dates throughout the bulbing process, and two S rates [0 kg S/ha (standard) & 22.4 kg S/ha (high)]. Laboratory analysis included pyruvic acid concentration for pungency measurement, percent dry matter, and sucrose, glucose, and fructose concentrations. Harvest date influenced all variables tested. Percent dry matter generally decreased as bulbs matured (8.0 to 6.9% DM) with a slight increase at maturity (7.4% DM). Enzymatically developed pyruvic acid concentrations ranged from 3.13 to 4.03 μmole/g fresh wt. There was an upward trend of pyruvic acid over the bulbing process. Total sugars, measured by HPLC methods, tended to increase during bulb development (39.3 to 46.5 mg/g fresh wt.). However, sucrose decreased during the last two harvests causing a corresponding increase in glucose and fructose. The S treatment had no effect on any of the factors measured. The only influence by soil type was sugar concentration, with the loam field being higher in glucose.

Free access


The effect of 3 growth regulators on the growth and flowering of Gerber jamesonii Hook. f. were evaluated. Two applications of daminozide and ancymidol restricted the height of gerbera, but no response occurred with chlormequat. Ancymidol was more effective than daminozide, especially when applied 6 or 7 weeks after transplanting. Times to visible bud and leaf number were not affected by growth regulator treatments. Plants were more responsive to daminozide when applied 8 weeks after transplanting compared with 5, 6, or 7 weeks.

Open Access

A number of natural volatile compounds exhibit promise as postharvest fumigants for control of Botrytis on strawberry fruit. Because some of compounds may cause apparent phytotoxic responses by the fruit, short duration treatment is desirable. The compounds have been evaluated in single fruit bioassays with passively established modified atmospheres using a polymer film. The compound source was removed after 3 hours, 1, 3, or 7 days, or remained in the containers for the 10 day duration of the study. At levels which inhibited Botrytis in closed containers without film, E-2-hexenal was effective with a 1-day treatment, diethyl acetal was increasingly effective as treatment period increased, and 2-nonanone and methyl salicylate were not effective with continuous treatment. The levels of both the source compound and its metabolites were different using the film than without it. The film, used to allow gas diffusion and exchange with the surrounding environment, may allow diffusion of the volatile compounds and their metabolites. Thus, successful use of the compounds in modified atmosphere storage may require knowledge of their diffusion through the films to establish the appropriate levels for effective fumigation of the fruit and avoid adverse quality effects.

Free access

Strawberry fruit were inoculated with the human pathogen E. coli O157:H7, and the bacteria were recovered from the fruit over a 3-day period of storage at room temperature. The bacterial population was maintained on fruit when the inoculation level was relatively high and increased when the inoculation level was low. The volatile metabolites of E. coli O157:H7 growing on plate count agar (PCA) and on inoculated strawberry fruit were collected by a headspace trapping system and analyzed by gas chromatography and GC-mass spectrometry. E. coli O157:H7 grown on PCA produced a variety of volatile compounds including indole as a major component and a series of methyl ketones. A nonpathogenic E. coli also produced these compounds. However, there was not an appreciable amount of indole collected from E. coli O157:H7 inoculated strawberry fruit as compared to the large amount of volatiles produced by the fruit. Strawberry fruit were able to capture over 95% of the vapor phase indole fed to them from a neat source.

Free access