Search Results
You are looking at 1 - 1 of 1 items for
- Author or Editor: Ashley R. Winslow x
The transition from vegetative growth to reproductive growth is carefully controlled by a number of independent signal transduction systems, one of which interprets photoperiod. Photoperiodic control of flowering time has been well-described in Arabidopsis and rice, revealing the presence of a generally common network of regulatory proteins. Timely and appropriate progression to flowering is critical to profitable production of cultivated strawberry (Fragaria ×ananassa), a species that includes long-day, short-day, and day-neutral cultivars. In an effort to characterize the photoperiodic flowering control mechanism in strawberry, the Fragaria orthologs of the photoperiod pathway genes were cloned and sequenced. Strawberry versions of Constans, Constans-like, Leafy, Flowering Locus T, and Suppressor of Constans Overexpression 1 were identified by screening cDNA libraries and through degenerate PCR approaches. Expression of these transcripts in short-day and day-neutral cultivars was tested under long and short photoperiods. Functional complementation of Arabidopsis mutants was performed where appropriate, alleles were identified, genetic linkage was determined where possible, and relationships between the strawberry genes and homologs from other species were studied. These trials define the mechanistic elements of an agriculturally important pathway in this valuable crop, and lays the foundation for transgenic studies in strawberry to manipulate the floral transition.