Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Ariel Singerman x
Clear All Modify Search
Restricted access

Ariel Singerman, Marina Burani-Arouca and Stephen H. Futch

The Florida citrus industry has been enduring the impact of citrus greening since 2005. The disease has been the main driver for the state’s citrus production to plummet by 80% in the past 13 years, causing the industry to downsize drastically. Planting new groves is key to ensuring a supply of fruit for processors and packinghouses to stay in business. However, a key question is whether it makes economic sense to plant a new grove in the current environment. We estimate the establishment and production costs for a new grove under endemic Huanglongbing (HLB; citrus greening) conditions for three different tree planting densities under different market conditions and examine their profitability. Our results show that establishing a new grove with a tree density similar to that of the state’s average is not profitable under current market conditions. However, greater tree densities are profitable despite the greater level of investment required.

Restricted access

Ed Etxeberria, Pedro Gonzalez, Ariel Singerman and Timothy Ebert

Monitoring the health of Huanglongbing-affected citrus trees by following changes in leaf Candidatus Liberibacter asiaticus (CLas) titer has an inherent element of imprecision because CLas titer varies considerably within the tree canopy and with calendar seasons. In addition, the destructive sampling method used to determine CLas titer entails a different set of leaves per sampling period adding to the inconsistency and inexactitude of the results. To overcome these ambiguities and to reduce the numerical variability between samples, we developed an experimental method that analyzes portions of the same treated leaves for up to four sampling periods. By assaying subsamples of adjacent locations of the same leaf, random variability was significantly reduced, and comparative analysis can be carried out with greater precision.