Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Anthony V. LeBude x
Clear All Modify Search

Experiments conducted in January (hardwood cuttings) and June (softwood cuttings) 1998 compared rooting and root dry weight (DW) of stem cuttings of three full-sib families of loblolly pine (Pinus taeda L.) rooted in Jiffy forestry peat pellets and Ray Leach Super Cells. Ray Leach Super Cells (vol.= 162 cm3) served as the control and contained a medium of 2 peat: 3 perlite (v/v). Pellet sizes used were 25-65, 30-65, 36-65, 36-75, 42-65, 42-80, and 50-95 (dry diam.-expanded height in mm). Cuttings were taken from hedged stock plants and rooted for 12 weeks under mist in a humidity-controlled greenhouse. Following evaluation for rooting in the June experiment, ≈500 rooted cuttings in pellets and Ray Leach Super Cells were field-planted in eastern Georgia in December 1998 to study the effect of pellet size and cutting development on first-year field growth. Rooting percentages in January for hardwood cuttings rooted in pellet sizes 42-80 (36%) and 50-95 (57%) were less than the control (83%). Root DW for each pellet size was less than the control. Rooting percentage in June for softwood cuttings rooted in pellet size 36-65 (77%) was greater than the control (64%) whereas rooting percentages for cuttings rooted in pellet sizes 42-80 (50%) and 50-95 (52%) were less than the control. Root DWs for cuttings in pellet sizes 25-65, 30-65, 36-65, and 42-65 were less than the control. Field performance data will be presented.

Free access

Producing high quality rooted stem cuttings on a large scale requires precise management of the rooting environment. This study was conducted to investigate the effect of the rooting environment on adventitious root formation of stem cuttings of loblolly pine (Pinus taeda L.). Hardwood stem cuttings of loblolly pine were collected in Feb. 2002 from hedged stock plants and stored at 4 °C until setting in Apr. 2002. One hundred stem cuttings per plot in each of two replications received 45, 61, 73, 102, 147, or 310 mL·m-2 of mist delivered intermittently by a traveling gantry (boom) system. Mist frequency was similar for all treatments and was related inversely to relative humidity (RH) within the polyethylene covered greenhouse. Rooting tubs in each plot were filled with a substrate of fine silica sand, and substrate water potential was held constant using soil tensiometers that activated a subirrigation system. Cutting water potential was measured destructively on two cuttings per plot beginning at 0500 hr every 3 hh until 2300 hr (seven measurements) 7, 14, 21, or 28 days after setting. During rooting, leaf temperature and RH were recorded in each plot to calculate vapor pressure deficit (VPD). Cutting water potential and VPD were strongly related to mist application. Cutting water potential was also related to VPD. Rooting percentage had a linear and quadratic relationship with mean cutting water potential and VPD averaged between 1000 and 1800 HR. Eighty percent rooting occurred within a range of values for VPD. Data suggest that VPD can be used to manage the water deficit of stem cuttings of loblolly pine to increase rooting percentage. These results may be applicable to other species and to other rooting environments.

Free access

Rhododendron L.‘Fragrantissimum Improved’ is an attractive cultivar with showy, fragrant flowers but has limited potential for breeding because it is a sterile wide hybrid. Protocols for in vitro regeneration and polyploid induction were developed for this cultivar as a means to potentially restore fertility and enhance ornamental traits. Combinations of thidiazuron (TDZ) at 0, 5, 10, 15, or 20 μM and 1-naphthaleneacetic acid (NAA) at 0, 2.5, 5, or 10 μM were used to induce shoot regeneration from leaves. Shoot regeneration was optimized (68% of leaf segments produced shoots) using 8.8 μM TDZ and 10 μM NAA. To induce polyploidy, regenerative callus was treated with 7.5, 15, 30, 60, or 90 μM of the mitotic inhibitor oryzalin for 1, 3, 5, 7, or 14 d in various combinations. Oryzalin significantly affected survival and shoot regenerative capacity. A percentage of homogenous, tetraploid shoots was recovered from treatments of 30 μM oryzalin for 1 (13%) or 3 (13%) days and 7.5 μM oryzalin for 7 (20%) or 14 (7%) days.

Free access

Two experiments were conducted during which juvenile hardwood or softwood stem cuttings of loblolly pine (Pinus taeda L.) were rooted under six mist regimes in a polyethylene-covered greenhouse to investigate the effect of mist level on vapor pressure deficit (VPD) and cutting water potential (Ψcut), and to determine the relationships between these variables and rooting percentage. In addition, net photosynthesis at ambient conditions (Aambient) and stomatal conductance (gs) were measured in stem cuttings during adventitious root formation to determine their relationship to rooting percentage. Hardwood stem cuttings rooted ≥80% when mean daily VPD between 1000 and 1800 hr ranged from 0.60 to 0.85 kPa. Although rooting percentage was related to Ψcut, and Aambient was related to Ψcut, rooting percentage of softwood stem cuttings was not related to Aambient of stem cuttings. Using VPD as a control mechanism for mist application during adventitious rooting of stem cuttings of loblolly pine might increase rooting percentages across a variety of rooting environments.

Free access

Nursery and greenhouse producers, research and extension faculty, and representatives from allied fields collaborated to formulate a renewed vision to address water issues affecting growers over the next 10 years. The authors maintained the original container irrigation perspective published in “Strategic vision of container nursery irrigation in the next ten years,” yet broadened the perspective to include additional challenges that face nursery crop producers today and in the future. Water availability, quality, and related issues continue to garner widespread attention. Irrigation practices remain largely unchanged due to existing irrigation system infrastructure and minimal changes in state and federal regulations. Recent concerns over urbanization and population growth, increased climate variability, and advancements in state and federal regulations, including new groundwater withdrawal limitations, have provided an inducement for growers to adopt efficient and innovative practices. Information in support of the overarching issues and projected outcomes are discussed within.

Open Access

In 2014, the Southern Nursery Integrated Pest Management (SNIPM) Working Group published both print and electronic versions of IPM for Shrubs in Southeastern U.S. Nursery Production: Volume I. Five hundred print books (of 3000 copies) were distributed to commercial ornamental growers and extension educators in return for their participation in a follow-up survey. The survey was administered to determine the value of book contents, savings that growers realized from using the book, perceived value of the book had users been asked to pay for it, and demographic information. The survey response rate was 46.2%, with respondents from 18 states. Of 243 respondents, 194 (79.8%) had used the book. Entomology information was most used and most useful, followed by plant pathology, weed science, and cultural information. Collective savings attributed to book use totaled $408,832/year for the 194 nurseries that used the book. Applying the use rate (79.8%) identified in this survey, this represents $5.62 million in savings per year for the 3000 printed books, of which 2394 are estimated to have been used. Savings varied by the type and size of operation. Larger operations had greater savings per year. Container growers saved $44.15/acre and field growers $28.37/acre. The price that growers were willing to pay for the book also varied by operation type and size. Extension educators and growers were willing to pay an average of $41.20, with an additional $0.063/acre for container growers and $0.126/acre for field growers. Return on investment for the U.S. Department of Agriculture grant funding for the project was $187.60 per dollar of funding. This survey demonstrates that collaborative efforts can produce high-value deliverables with significant regional and/or national impact.

Full access

With increased mobile device usage, mobile applications (apps) are emerging as an extension medium, well suited to “place-less” knowledge transfer. Conceptualizing, designing, and developing an app can be a daunting process. This article summarizes the considerations and steps that must be taken to successfully develop an app and is based on the authors’ experience developing two horticulture apps, IPMPro and IPMLite. These apps provide information for major pests and plant care tasks and prompt users to take action on time-sensitive tasks with push notifications scheduled specifically for their location. Topics such as selecting between a web app and a native app, choosing the platform(s) for native apps, and designing the user interface are covered. Whether to charge to download the app or have free access, and navigating the intra- and interinstitutional agreements and programming contract are also discussed. Lastly, the nonprogramming costs such as creating, editing, and uploading content, as well as ongoing app management and updates are discussed.

Full access

Mobile device applications (apps) have the potential to become a mainstream delivery method, providing services, information, and tools to extension clientele. Testing, promoting, and launching an app are key components supporting the successful development of this new technology. This article summarizes the considerations and steps that must be taken to successfully test, promote, and launch an app and is based on the authors’ experience developing two horticulture apps, IPMPro and IPMLite. These apps provide information for major pests and plant care tasks and prompt users to take action on time-sensitive tasks with push notifications scheduled specifically for their location. App testing and evaluation is a continual process. Effective tactics for app testing and evaluation include garnering focus group input throughout app development and postlaunch, in-house testing with simulators, beta testing and the advantages of services that enhance information gained during beta testing, and postlaunch evaluations. Differences in promotional and bulk purchasing options available among the two main device platforms, Android and iOS, are explored as are general preparations for marketing the launch of a new app. Finally, navigating the app submission process is discussed. Creating an app is an involved process, but one that can be rewarding and lead to a unique portal for extension clientele to access information, assistance, and tools.

Full access