Search Results

You are looking at 1 - 10 of 11 items for

  • Author or Editor: Annette L. Wszelaki x
Clear All Modify Search

High tunnels are rapidly gaining favor from growers in many regions of the United States because these structures extend the growing season and increase quality of high-value horticultural crops. Small to midsized organic growers who sell tomatoes (Solanum lycopersicum) for the fresh market can benefit from lower disease pressure and higher marketable yields that can be achieved in high tunnels. High tunnels also protect crops from environmental damage and benefit production of heirloom tomatoes as these varieties often have softer fruit and are more susceptible to diseases and cracking and splitting than hybrid varieties. The objective of this study was to determine the impacts of high tunnel production and planting date on heirloom and hybrid tomato varieties by observing differences in plant growth, yield, marketability, and early blight (Alternaria solani) development within an organic production system. This study showed no increase in total yields in high tunnels as compared with the open field, but increased marketability and size of tomatoes, and lowered incidence of defoliation resulting from early blight. Tomato planted earlier in both high tunnels and the open field yielded more marketable fruit during the production season than plants established on later planting dates. Hybrid varieties yielded more marketable fruit than heirloom varieties; however, heirloom tomatoes can have equivalent market value because of greater consumer demand and premium prices attained in the local market.

Full access

While much research has been conducted in organic farming, little has focused on tropical systems. Tropical, versus temperate, systems present additional challenges for organic producers, including differences in soils, temperature, daylength, rainfall, and humidity. Pest management in tropical organic systems can be particularly demanding due to the year-round pest pressure and optimal environment for pest proliferation. Weed management is essential for the production of high-quality watermelons, but can be difficult when herbicides are not permitted. Weeds also serve as a source of inoculum for disease organisms and a habitat for insects, both beneficial and detrimental. Many products have been advertised for pest control in organic farming systems, most of which have not been adequately evaluated in independent, replicated trials. Here we investigated alternatives to pesticides for the control of weeds, insects, and diseases in `Crimson Sweet' watermelons. A split plot on a RCBD with four replications per treatment was used, with weed treatment (± paper-grass mulch) as the main plot and 12 insect and disease control alternatives as subplots. The alternatives for insect and disease control included traditional copper-based fungicides, biological control agents, potassium bicarbonate, hydrogen dioxide, milk, and commercial formulations of essential oils. Weed abundance (percentage cover), disease severity (percentage disease), and insect damage (percentage foliar damage) were evaluated weekly using a modified Horsfall-Barratt scale. Yield and quality were measured at harvest on five plants from each replication. While none of the products should be relied upon as the sole means of managing pests, those with efficacy could be integrated into organic management programs.

Free access

Controlled atmospheres have been proven an effective postharvest disease deterrent for strawberries both in transport and storage. However, these treatments do not provide residual protection once the commodity is removed from the atmosphere, and the atmospheres can cause off-flavors in the fruit. Elevated oxygen atmospheres are a novel addition to this technology and could potentially provide better decay control without the harmful effects on fruit flavor aspects. Elevated oxygen will potentially discourage microbial growth, as anaerobes grow best under very low oxygen levels and aerobes grow best under atmospheric oxygen. Threshold elevated oxygen levels to prevent Botrytis cinerea growth in vitro and in vivo on strawberry were assessed. Botrytis cultures (mycelial plugs and spores) and fresh strawberry fruit were exposed to 21%, 40%, 60%, and 80% oxygen atmospheres at 5 °C for 5, 7, and 14 d. Growth of cultures from mycelial plugs was evaluated after treatment and during post-treatment incubation by measuring the diameter of the fungus. Spore germination and germ tube elongation were evaluated every 24 h for 3 days after treatment by counting the number of germinated spores and measuring elongation, respectively. Strawberry quality including firmness, color, soluble solids, titratable acidity, ethylene production and respiration rates, and presence of defects were evaluated upon removal from the elevated oxygen atmospheres as well as after 1, 3, and 5 d storage in air at 20 °C simulating market conditions.

Free access

Plasticulture systems with polyethylene (PE) mulch and drip tape are common for production of peppers (Capsicum annuum L.) in the United States because of their soil warming, moisture conservation, and other advantageous effects. However, disadvantages include disposal costs and plastic pollution of the environment and temperature stress in warm climates with black mulch. Use of biodegradable plastic mulches (BDMs) is becoming more common, as they provide the same benefits of PE mulch without the disposal problems. In 2017 and 2018, we conducted experiments in Knoxville, TN, comparing production of pepper fruit with five different BDM [one white-on-black (WOB) and four black], one black PE mulch, one brown creped, paper mulch, and bare ground control treatments. We also measured the durability and effectiveness of weed suppression of the different mulches over the growing season compared with a hand-weeded bare ground control. Most mulches were degraded, with 40% to 60% of the soil exposed by the end of the season, with the exception of the paper mulch, which was completely degraded at the end of both seasons. Yields were similar among treatments in 2017, with the exception of Naturecycle, which had the lowest yield. Weed pressure was severe, especially in 2018, largely due to early penetration of all mulches except paper by nutsedge. Due to the early and season-long weed pressure and heat stress in black mulches, there were fewer healthy plants in all black-colored mulch treatments in 2018, leading to reduced yields in these treatments. Paper mulch was the only treatment that prevented nutsedge growth; therefore, this treatment and the hand-weeded bare ground treatment had the greatest yields in 2018. WOB also had yields comparable with paper and bare ground plots in 2018, likely due to the cooling effect of the white mulch. The results suggest that in hot climates and in fields infested with nutsedge, paper mulches perform best for midseason pepper cultivation due to the cooling effects and superior weed control.

Free access

The use of plastic biodegradable mulch (BDM) in many vegetable crops such as tomato (Solanum lycopersicum L.), broccoli (Brassica oleracea L. var. italica), and pepper (Capsicum annuum L.) has been proven to be of equal benefit as polyethylene (PE) mulch. However, there are limited research findings on the performance of BDM with a large fruited crop such as pumpkin (Cucurbita pepo L.) where the fruit can rest directly on the mulch for an extended period. To investigate whether heavy fruit might cause the mulch to degrade more quickly than expected, thereby, influencing weed control, fruit yield, and fruit quality including mulch adhesion on fruit, we carried out a field experiment in 2015 and 2016 at two locations in the United States with distinctive climates, Mount Vernon, WA and Knoxville, TN. Three plastic mulches marketed as biodegradable (BioAgri, Organix, and Naturecycle), one fully biodegradable paper mulch (WeedGuardPlus), and one experimental plastic BDM consisting of polylactic acid and polyhydroxyalkanoates (Exp. PLA/PHA) were evaluated against PE mulch and bare ground where ‘Cinnamon Girl’ pie pumpkin was the test crop. There was significant weed pressure in the bare ground plots at both locations over both years, indicating viable weed seed banks at the field sites. Even so, weed pressure was minimal across mulch treatments at both locations over both years because the mulches remained sufficiently intact during the growing season. The exceptions were Naturecycle in 2015 at both locations because of the splitting of the mulch and consequently higher percent soil exposure (PSE), and the penetration of all the plastic mulches at Knoxville by nutsedge (Cyperus sp. L.); nutsedge did not penetrate WeedGuardPlus. At Mount Vernon, overall pumpkin yield across both years averaged 18.1 t·ha−1, and pumpkin yield was the greatest with PE, Exp. PLA/PHA, BioAgri, and Naturecycle (19.9–22.8 t·ha−1), intermediate with Organix and WeedGuardPlus (15.3–18.4 t·ha−1), and the lowest for bare ground (8.7 t·ha−1). At Knoxville, overall pumpkin yield across both years averaged 17.7 t·ha−1, and pumpkin yield did not differ because of treatment (15.3–20.4 t·ha−1). The differences in yield between treatments at Mount Vernon were likely because of differences in the soil temperature. At 10 cm depth, the average soil temperature was 1 °C lower for bare ground and WeedGuardPlus as compared with PE mulch and plastic BDMs (20.8 °C). In contrast, soil temperatures were generally higher (25.2 to 28.3 °C) for all treatments at Knoxville and more favorable to crop yield compared with Mount Vernon. Forty-two percent to 59% of pumpkin fruit had mulch adhesion at harvest at Mount Vernon, whereas only 3% to 12% of fruit had mulch adhesion at Knoxville. This difference was because of the location of fruit set—at Mount Vernon, most of the fruit set was on the mulch whereas at Knoxville, vine growth was more extensive and fruit set was mostly in row alleys. Fruit quality differences among treatments were minimal during storage across both locations and years except for total soluble solids (TSS) in 2016, which was lower for bare ground and WeedGuardPlus compared with all the plastic mulches. Taken overall, these results indicate that pie pumpkin grown with BDM has fruit yield and quality comparable to PE mulch; however, adhesion of some BDMs on fruit could affect marketable yield. Furthermore, paper mulch appears to prevent nutsedge penetration.

Free access

Biodegradable mulches (BDMs) provide a unique advantage to growers in that they can be tilled into the soil after use, eliminating disposal costs that include time, labor, and equipment needs. Biodegradation of BDMs in the soil can be assessed by the presence of visible mulch fragments; although this is not a direct measure of biodegradation, it provides an initial estimation of mulch biodegradation. We carried out three field experiments to develop a protocol for quantifying BDM fragments in the soil after soil incorporation of mulch. Expt. 1 was done at Mount Vernon, WA, and Knoxville, TN, using five BDMs in four replications, including a polyethylene (PE) mulch reference treatment (three replications and at Mount Vernon only), and a ʽCinnamon Girl’ pumpkin (Cucurbita pepo) test crop. At the end of the growing season, mulches were tilled into the soil to a depth of 6 inches and within 16 days, five soil samples were collected with a golf hole cutter (4 inches diameter and 6 inches deep). Fifty-nine percent of the PE mulch fragments were recovered from the reference treatment. Among the remaining treatments, there was a high plot-to-plot variation as to the percent of the BDM recovered (3% to 95% at Mount Vernon, 2% to 88% at Knoxville). To exclude the possibility of mulch degradation impacting mulch recovery, in Expts. 2 and 3 (at Mount Vernon only), one BDM was laid, then tilled into the soil and sampled using the same sampling core as in Expt. 1, but all in 1 day. In Expt. 2, 15 soil samples were collected per plot, which recovered 70% of the mulch, and in Expt. 3, the entire plot was sampled by collecting 128 soil samples per plot, which recovered 62% of the mulch. In summary, sampling with a relatively large core recovered less than 70% of tilled-in mulch, there was high variability between plots within each treatment because of uneven distribution of the mulch fragments in the plot, and even 50 samples per plot did not provide an accurate estimate of the amount of mulch remaining in the field. Thus, soil sampling with a large core was ineffective, and new sampling methods are needed to assess the amount of BDM remaining in the field after soil incorporation.

Full access

Polyethylene (PE) mulch provides significant benefits to fruit and vegetable producers because it has the potential to improve crop quality and increase yield. However, the use of PE mulch generates plastic pollution, posing challenges to the sustainability of fruit and vegetable production. Plastic biodegradable mulches (BDMs) are a sustainable alternative to PE mulch because they are designed to decompose into water, carbon dioxide, and microbial biomass. We surveyed Tennessee fruit and vegetable growers to assess their use of PE mulch, BDM, or both; the differences in the characteristics of BDM users and nonusers; and their interest in using BDM. Our results indicate a large percentage of fruit and vegetable growers have used PE mulch compared with BDM. In general, BDM users tend to have more acres in fruit and vegetable production, have used dumping and burying as PE mulch disposal methods, and have spent more hours removing and disposing of PE mulch. Results indicate that even at prices higher than the current average market price for BDM, there is a percentage of Tennessee fruit and vegetable growers interested in using BDM.

Open Access

Growers seeking alternatives to traditional polyethylene plastic mulch may use biodegradable plastic mulches (BDMs). However, plasticulture systems typically also use plastic drip tape underneath the mulch, which must be removed from the field and disposed of at the end of the season, making tilling the BDM into the soil more difficult and expensive. A potential solution to this dilemma may be to use other irrigation methods, such as overhead sprinklers, that could be more easily removed from the field and reused from year to year. At Knoxville, TN, in 2019 and 2020, we grew three cultivars of romaine lettuce (Lactuca sativa) on BDM with two irrigation systems (overhead sprinklers above the mulch and drip irrigation tape under the mulch) to compare water use, disease, and yield in these two irrigation systems. Water use was higher in overhead vs. drip irrigation in both years; however, the difference in water use was much smaller in 2019 due to higher rainfall amounts during the time period the lettuce was growing in the field (March to May). Disease incidence and severity were very low both years for both irrigation systems. There were no differences in marketable yield (number of heads) between irrigation treatment in 2019. In 2020, marketable yield by number was greater in the drip vs. overhead irrigation treatment. Unmarketable yield in 2019 was due to heads that were too small; in 2020, unmarketability was predominantly due to tipburn in overhead irrigated ‘Jericho’. Overall, marketable lettuce yield did not differ between irrigation treatments in 2019 and was similar for ‘Parris Island Cos’ in 2020. Although quantitative weed counts were not made, observations of weed pressure between rows showed that weed pressure was higher in overhead irrigated compared with drip irrigated subplots. This highlights the need to have a between-row weed management program in place. The results of this study suggest that with attention to cultivar and weed management, overhead irrigation could be a viable alternative to drip irrigation for lettuce production on BDM, especially for early spring lettuce when rainfall is historically more plentiful.

Open Access

Field studies were conducted during 2010 and 2011 in Knoxville, TN; Lubbock, TX; and Mount Vernon, WA; to compare high tunnel and open-field organic production systems for season extension and adverse climate protection on lettuce (Lactuca sativa) yield and quality. The climates of these locations are diverse and can be typified as hot and humid (Knoxville), hot and dry (Lubbock), and cool and humid (Mount Vernon). In both years, 6-week-old lettuce seedlings of ‘New Red Fire’ and ‘Green Star’ (leafy type), ‘Adriana’ and ‘Ermosa’ (butterhead type), and ‘Coastal Star’ and ‘Jericho’ (romaine type) were transplanted in the late winter or early spring into subplots covered with black plastic and grown to maturity (43 to 65 days). Lettuce harvest in Knoxville occurred at 50 to 62 days after transplanting (DAT), with open-field lettuce harvested an average of 9 days earlier compared with high tunnel plots both years (P > 0.0001). The earlier than anticipated harvests in the open-field in Knoxville in 2010 were due to lettuce bolting. In Lubbock, high tunnel lettuce was harvested an average 16 days earlier in 2010 compared with open-field lettuce (P > 0.0001), while in 2011, high temperatures and bolting required that open-field lettuce be harvested 4 days earlier than lettuce grown in high tunnels. On average, lettuce cultivars at Mount Vernon matured and were harvested 56 to 61 DAT in 2010 and 54 to 64 DAT in 2011 with no significant differences between high tunnel and open-field production systems. Total and marketable yields at Mount Vernon and Lubbock averaged across cultivars were comparable in both high tunnel and open-field plots. At Knoxville, although total yields were significantly higher (P > 0.0062) in high tunnels than open-field plots, incidence of insect, disease, and physiological damage in high tunnel plots reduced lettuce quality and marketable yield (P > 0.0002). Lettuce head length:diameter ratio (LDR) averaged across cultivars was equal between high tunnel and the open field at all three locations. High tunnel production systems offer greater control of environments suitable for lettuce production, especially in climates like Knoxville and Lubbock where later-planted open-field systems may be more susceptible to temperature swings that may affect lettuce quality. These results suggest that although high tunnel culture alone may influence lettuce yield and quality, regional climates likely play a critical role in determining the impact of these two production systems on marketable lettuce yields.

Full access

Plastic mulch films contribute to improved crop yield and quality for vegetable and small fruit cropping systems. Although the single-season agronomic performance of conventional polyethylene mulches and soil-biodegradable mulches (BDMs) are similar, over time BDMs can begin to break down during storage and subsequently not provide season-long soil coverage. In this study, the changes in physicochemical properties of BDMs were investigated over 3 years of indoor storage (2015–18) under ideal environmental conditions in two laboratories. Mulches evaluated were black, 20–40 µm thick, suitable for annual vegetable production, and included three BDMs: two polybutylene adipate terephthalate (PBAT)-enriched mulches that are commercially available in North America, an experimental polylactic acid (PLA) and polyhydroxyalkanote-based film, and a conventional polyethylene mulch as a control. Tensile properties, specifically peak load and elongation at maximum tensile stress, decreased during storage, particularly for the PBAT-based BDMs, indicating a loss of strength. During year 3 of storage, the tensile properties declined extensively, suggesting embrittlement. The average molecular weight of PLA and PBAT slightly increased during year 1, perhaps due to release of monomers or oligomers, and then decreased extensively during years 2 and 3 due to hydrolysis of ester bonds (confirmed by Fourier transform infrared spectroscopic analysis). The structural integrity of BDMs was assessed during years 2 and 3 of the study (2017–18) in field trials at the locations where they were stored, Knoxville, TN, and Mount Vernon, WA, for vegetable production. The degradation of the BDMs during the cropping season was higher in 2018 compared with 2017, suggesting that degradation of mechanical and chemical properties while in storage may have contributed to rapid degradation of mulches in the field. In summary, BDMs undergo degradation even under ideal storage conditions and may perform best if deployed within 2 years of their receipt date. The farmer should verify that proper storage conditions have been used before receipt and that manufacturing date precedes the receipt date by no more than 6 months.

Open Access