Search Results
A salt-tolerance selected F5 generation from a cross between the wild tomato species, Lycopersicon cheesmanii, ecotype LA 1401, and the cultivated species, L. esculentum Mill. (cv Heinz 1350) was compared to the wild parental line in a solution culture experiment to determine the effects of selection on salt tolerance, and ion discrimination and accumulation characteristics in the selected line. Seedlings were transplanted to nutrient solutions at the 3 to 4-leaf stage of growth and after a 1-week period of adjustment, were salinized at 25 mM NaCl day-1 (approximately -1 bar osmotic potential) to final salt concentrations of 0, 50, and 100 mM. Plasmalemma and tonoplast vesicles were isolated from fresh root samples, and ATPase and Na+/H+ antiport activity was determined using fluorescence assays. The selected line restricted Na uptake into the shoot and maintained higher shoot K+ than did the wild parent. Growth rate under salinity was greater in the selected line than in the wild species, but relative salt tolerance was higher in the wild parent. Interspecific hybridization appears to be a useful process for the transfer of salt tolerance characters from wild to cultivated tomato.