Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Anna J. Talcott x
Clear All Modify Search

Two species of North American shrubs in the genus Ptelea (Rutaceae), commonly known as eastern and western hoptree or wafer ash, have unfulfilled potential to increase the diversity of managed landscapes and support populations of pollinators and swallowtail butterflies. The white flowers of Ptelea are highly fragrant, and pistillate flowers give rise to clusters of distinctive samaras. The insufficiency of information about improving germination of seeds of Ptelea trifoliata and lack of recommendations for Ptelea crenulata prompted us to investigate effects of pericarp removal and cold (4 °C) stratification periods of 0, 4, 8, and 16 weeks on the germination of seeds of these two species. Samaras were collected from multiple plants of both species in the midwestern United States (P. trifoliata) and California (P. crenulata). The germination percentage of viable seeds, calculated after tests of viability with tetrazolium chloride of seeds that did not germinate, increased with longer stratification periods, with 100% germination for P. crenulata and 91% germination for P. trifoliata after 16 weeks of stratification. The germination value, a measure of the speed and uniformity of germination, and peak value also increased with longer stratification in both species. Pericarp removal increased the germination percentage of both species and increased the peak and germination value of P. crenulata. Propagators seeking to grow these species of Ptelea from seed should remove the pericarp and cold-stratify seeds for 16 weeks to improve germination success.

Open Access

Many members of the citrus family (Rutaceae) are valued for the aromatic compounds emitted by their flowers. Ptelea species are unusually cold-hardy members of the Rutaceae, but conflicting descriptions of the fragrance of their unisexual flowers may discourage the use of these trees. We analyzed floral volatiles and human response to these chemicals to test the hypothesis that the fragrance of staminate and pistillate flowers of these species differs. Gas chromatography and mass spectrometry showed that most volatile chemicals emitted by flowers of Ptelea trifoliata and Ptelea crenulata are monoterpenes, sesquiterpenes, and esters. Most volatiles were emitted from flowers of both sexes, but ethyl benzoate and estragole were emitted only from pistillate flowers. When concentrations of aromatics differed between sexes, they were higher for pistillate flowers, except for cis-3-hexenyl butanoate and an unidentified terpene. For P. crenulata and P. trifoliata, respectively, 81% and 77% of survey responses were from volunteers who liked the fragrance. Panelists most frequently described the scent of flowers of P. crenulata of both sexes with the words citrus, lime, and sweet. Panelists distinguished between pistillate and staminate flowers of P. trifoliata, describing the odor of pistillate flowers most frequently with the words damp-earthy, spicy, and sweet; staminate flowers were perceived as light, fresh, grassy, and pleasant. This work represents the first analysis of floral volatiles of P. crenulata and resolves conflicting prior reports regarding the floral fragrance of P. trifoliata. We conclude that differences among people rather than the sex of flowers account for conflicting prior reports of floral fragrance. The scents of flowers of P. crenulata and P. trifoliata appeal to most people and are horticultural assets of these trees.

Open Access