Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Ann M. Clements x
Clear All Modify Search

Several components of whole-plant growth were compared among accessions of Fragaria chiloensis (FC) and F. virginiana (FV) grown at 23 and 31 °C daytime temperatures. The accessions loosely represented North American (NA) and South American (SA) provenances of FC and Kentucky (KY) and eastern Canadian (CN) provenances of FV. Differences in component values between species and by provenance and accession within species were observed at each temperature. Using the ratio of the component value at 31 °C to that at 23 °C as a basis for comparisons, whole-plant relative growth rate (RGR), leaf net assimilation rate (NAR), root RGR, and root: shoot ratio were reduced relatively more by high temperature in FC than FV, while crown RGR, leaf RGR, and leaves produced per day were not consistently affected by temperature or and did not differed significantly between species. While the SA FC exhibited higher values for nearly all components than the NA FC at both temperatures, both were affected similarly by high temperature. The CN FV exhibited somewhat greater sensitivity to high temperature than the KY FV, with significantly lower leaf NAR, crown RGR, and leaves produced per day in the former group.

Free access

Divergent physiological responses to drought between and among accessions within Fragaria chiloensis (FC) and F. virginiana (FV) may result from differing responses to ABA produced during the drought. Excised leaves from an accession of each species as well as F. ×ananassa (FXA) `Tribute' and their interspecific hybrids were fed ABA at 0, 1, 10, 100, and 1000 nM via the cut petiole for 24 h before measuring transpiration rate. Transpiration rates of the FV accession and FV by FXA hybrid were relatively less responsive to ABA than any of the others tested. Foliar membrane competence of the FC and FV accessions, measured by the gTi method using excised disks, was reduced by ABA treatment in both species with a relatively greater effect on FV. A drought episode before sampling affected gTi values of FV but not FC. ABA treatment had no additional effect on gTi values of a previously droughted FC accession, while gTi values of a previously droughted FV accession were increased with ABA treatment. Thus, transpiration of the FV accession was less responsive to increasing ABA concentration than the FC accession, while membrane competence of the FV accession was affected more by both drought and ABA treatment applied separately or in combination than the FC accession.

Free access

Seedless table grapes (Vitis vinifera L.) cv. Crimson Seedless were exposed to (E)-2-hexenal vapor during cold storage to determine its potential as a fumigant for long-term control of postharvest mold. Fruit were fumigated with 0.86 or 1.71 mmol (100 or 200 μL neat compound, respectively) (E)-2-hexenal per 1.1-L container for 2 weeks during 2 °C storage. Containers were moved to 20 °C storage after 4, 8, and 12 weeks for determination of mold incidence and berry quality over 12 days. The headspace concentration of (E)-2-hexenal, measured by gas chromatography, reached a maximum of 2.5 and 4.2 μmol·L–1 for 0.86 and 1.71 mmol per container, respectively, after 1 day and declined to <1 μmol·L–1 for both treatments by 14 days. Upon removal from cold storage at 4, 8, and 12 weeks, the incidence of mold was significantly lower for (E)-2-hexenal–treated fruit. Control of mold by (E)-2-hexenal fumigation persisted through 12 days of 20 °C storage, even though mold generally increased in all treatments. The two levels of (E)-2-hexenal were similar in their suppression of mold. Fumigation did not affect O2 or CO2 concentrations within the containers, nor were fruit firmness or soluble solids content affected. Postharvest fumigation of seedless table grapes with the natural volatile compound (E)-2-hexenal shows promise for control of mold.

Free access

Prior work indicated that volatile compounds produced by macerated strawberry fruit occurred at levels capable of affecting pathogen development. To determine if a less-severe injury, such as bruising, would alter the volatile profile of strawberry fruit, the headspace volatiles from ripe `Tribute' strawberry fruit were sampled with SPME fiber during the 15 min immediately following and from 75 to 90 min following application of a compression bruise. The compression bruise was applied with a force gauge, and fruit were kept in a closed bottle at room temperature during the study. Of the 14 major volatile products consistently produced by all fruit, acetate esters derived from hexanal, (E)-2-hexenal, and (Z)-3-hexenal increased most, over 50%, in response to bruising during the first interval. During the later interval, bruised fruit produced over 50% more (E)-2-hexenyl acetate and hexyl acetate than control fruit. Most notably, the ratio of levels of (E)-2-hexenyl acetate produced by bruised compared to control fruit were the highest among all 14 major volatiles, over 150% more after 15 min and 270% more at 90 min. Headspace levels of the 6-carbon acetate esters declined for both control and bruised fruit between 15 and 90 min, while levels of the other major volatiles increased. The other 11 volatile compounds were commonly identified aroma volatiles. Headspace levels of some of these were also higher from bruised than control fruit. In particular, headspace levels of ethyl butyrate were increased by bruising 13% after 15 min but over 100% after 90 min, the most of any volatile product other than (E)-2-hexenyl acetate.

Free access

Some plant-derived natural volatile compounds exhibit antifungal properties and may offer an opportunity to control the causes of postharvest spoilage without affecting quality of, or leaving a residue on, fresh produce. The natural wound volatile (E)-2-hexenal has exhibited significant antifungal activity in earlier studies, but effects on spore germination and mycelial growth have not been separated, nor has the inhibitory mode of action been determined. To determine the efficacy of (E)-2-hexenal for control of Botrytis cinerea Pers. ex Fr. spore germination and mycelial growth, and to examine the mode of action, in vitro and in vivo studies were performed. Under in vitro bioassay conditions, spore germination was more sensitive to the compound than was mycelial growth. Vapor from 10.3 μmol of (E)-2-hexenal in a 120-mL petri dish completely inhibited spore germination. However, 85.6 μmol of (E)-2-hexenal was required to completely inhibit mycelial growth. Lower concentrations of the compound (5.4 and 10.3 μmol) significantly stimulated mycelial growth, especially when the volatile was added 2 days following inoculation. Mycelial growth did not occur as long as the vapor-phase concentration was 0.48 μmol·L-1 or greater. Light microscopy analysis indicated that a high concentration of volatile compound dehydrated fungal hyphae and disrupted their cell walls and membranes. Exposure of B. cinerea-inoculated and non-inoculated strawberry (Fragaria ×ananassa Duch.) fruit in 1.1-L low-density polyethylene film-wrapped containers to vapor of (E)-2-hexenal at 85.6 or 856 μmol (10 or 100 mL, respectively) per container for durations of 1, 4, or 7 days during 7 days of storage at 2 °C promoted the incidence of B. cinerea during subsequent shelf storage at 20 to 22 °C. Loss of fruit fresh mass and fruit firmness during storage at 22 °C was increased by (E)-2-hexenal treatment, but fruit total soluble solids, pH, titratable acidity, and color (L, C, and H values) were not affected. Thus, maintenance of a high vapor-phasel level of (E)-hexenal, perhaps >0.48 μmol·L-1, may be necessary to inhibit mycelial growth and avoid enhancing postharvest mold problems, while significantly higher levels may be necessary to completely eliminate the pathogen.

Free access