Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Ann Green x
Clear All Modify Search
Full access

Steven McArtney, Dick Unrath, J.D. Obermiller and Ann Green

Experiments were conducted in commercial apple (Malus ×domestica) orchards in the southeastern U.S. between 1998 and 2006 with the primary objective of evaluating the effects of naphthaleneacetic acid (NAA) and ethephon on return bloom. NAA increased return bloom in six of 10 experiments, whereas ethephon increased return bloom in four of seven experiments. Four biweekly applications of 5 ppm NAA during June and July (early summer NAA) increased return bloom more consistently than fewer applications. Four weekly preharvest applications of 5 ppm NAA increased return bloom of ‘Delicious’ and ‘Golden Delicious’ as effectively as early summer applications. Combining NAA and ethephon in early summer sprays did not consistently increase return bloom compared with either material alone. The flower cluster density of ‘Golden Delicious’ in the year of treatment had a negative effect on return bloom that was more pronounced on control trees than trees sprayed 5 weeks after bloom with 444 ppm ethephon (48 fl oz/acre Ethrel). Combining four early summer sprays of 316 ppm ethephon (24 fl oz/acre Ethrel) with 15 ppm gibberellin A4 + A7 (GA4+7) increased return bloom of ‘Cameo’ but had no effect on return bloom of ‘Mutsu’ or ‘Golden Delicious’. Growth regulator treatments did not have a consistent effect on fruit firmness in the year of treatment. Naphthaleneacetic acid or ethephon treatments in the on year of a biennial bearing cycle can promote return bloom of apple spurs. However, the positive effect on return bloom may be minimal in cultivars with a strong natural tendency toward biennial bearing or when bloom or initial fruit set are heavy in the year of treatment.

Free access

Craig D. Green, Ann Stodola and Robert M. Augé

Mycorrhizal colonization can alter stomatal behavior of host leaves during drought. This may be related to an altered production or reception of a chemical signal of soil drying. We tested whether intact root systems were required to observe a mycorrhizal effect on leaf transpiration (E), or whether some residual mycorrhizal influence on leaves could affect E of foliage detached from root systems. Transpiration assays were performed in the presence of several possible candidates for a chemical signal of soil drying. In detached leaves of Vigna unguiculata (cowpea), colonization interacted significantly with ABA and pH in regulating transpiration. Colonization affected E of detached Rosa hybrida (rose) leaves but had no effect on E of detached leaves of Pelargonium hortorum (geranium). In each species tested, increasing the ABA concentration decreased E. In cowpea, calcium appeared to alter stomatal sensitivity to ABA, as well as regulate stomatal activity directly. The pH of the feeding solution affected E in rose, but did not change E independently in cowpea or geranium. Adding phosphorus to the feeding solution did not alter E or the apparent sensitivity of stomata to ABA in any of the test species. Colonization of roots by mycorrhizal fungi can result in residual effects in detached leaves, that can alter the stomatal reception of chemical signals in both rose and cowpea.