Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Anfu Hou x
Clear All Modify Search
Authors: and

Introgression of genes in species crosses can be observed morphologically in backcrossed or selfed progenies, but the phenotype does not give information about the movement of DNAs. Cytogenetic markers allow for visualization of specific DNAs in a genome. Few cytogenetic markers are available in onion to monitor the introgression of DNA in species crosses. Genomic in situ hybridization (GISH) provides a way to locate unique DNA sequences contributed by parents. We are using GISH to monitor the movement of DNAs from A. fistulosum into A. cepa. Results of experiments using A. fistulosum as probe DNA, and A. cepa as blocking DNA will be reported. Also presented are hybridization sites observed in F1BC3 progeny of the GISH.

Free access

Molecular DNA markers based on the RAPD (random amplified polymorphic DNA) assay are gaining use in germplasm assessment. RAPD markers are simple, relatively inexpensive, and highly informative. We used five primers to assess 26 Brassica oleracea breeding lines from the IVF and nine accessions from the PGRU. The test array included eight subspecies of B. oleracea. We generated 90 RAPD markers and were able to unambiguously discriminate among all 35 test entries, but could not separate subspecies within B. oleracea. Genetic similarity between subspecies ranged from 0.629 to 0.738. Average similarity within accessions was 0.96, confirming the suspected homogeneity of breeding lines. Nevertheless, significant genetic diversity was found among kohlrabi, broccoli, and cabbage accessions. Similarity analysis of breeding lines and hybrids confirmed their pedigree relationships. Interestingly, B. o. subsp. costata `Couve Nabica' showed closer similarity to B. napus subsp. oleifera `Jet Neuf' than to other B. o. materials and B. o. subsp. italica `Packman' showed higher similarity to some cabbages than to other broccolis. Results provide further evidence that diversity assessment using RAPDs is broadly applicable and useful in germplasm conservation and utilization.

Free access