Search Results
Despite consumer interest in biocontainers, their use in commercial greenhouse production remains limited. Previous research indicates that a perceived incompatibility of biocontainers with current production systems may be a barrier to their widespread adoption. This article investigates two potential areas of concern for growers looking to adopt biocontainers as part of their production process: 1) the ability of biocontainers to withstand the rigors of a semimechanized commercial production process, and 2) biocontainer performance under three different irrigation methods (i.e., hand, ebb-and-flood, and drip irrigation). In the two studies presented here, ‘Florida Sun Jade’ coleus (Solenostemon scutellarioides) was evaluated to match measures of container resiliency with plant performance. Results indicate that plants grown in biocontainers were of equal size and quality as those grown in conventional plastic containers within each of the irrigation types tested. However, some biocontainers were more prone to damage during crop production, handling, and shipping.
Weed control continues to be one of the most expensive and time consuming aspects of landscape maintenance. Many homeowners are becoming more interested in nonchemical pest-management strategies due to increasing concern over the environmental impact of pesticide use. Nonchemical landscape weed control can be achieved using mechanical disruption (e.g., mowing, hand-pulling, hoeing, and tilling), physical barriers, or cultural control methods (e.g., mulching and plant selection). However, the best results are almost always achieved when employing a variety of methods (often involving chemical control methods). In adopting a weed control strategy, client expectations and weed tolerances must be addressed. While a virtually weed-free landscape is possible without the use of herbicides, this goal often requires a significant amount of time and money, and requires more planning to be successful. The goal of this manuscript is survey the literature pertaining to nonchemical weed control in landscape planting beds and determine: 1) the most effective strategies; 2) the advantages and disadvantages of common practices; and 3) highlight areas where research is needed or improvements could be made.
Use of preemergence and postemergence herbicides is the most effective and economical method of weed control in landscape planting beds. When used correctly, herbicides can provide satisfactory weed control, reduce labor costs, and cause little or no negative environmental impacts. Major factors in herbicide efficacy include choosing the correct herbicide for the weed species present, following proper calibration procedures, and applying herbicides at the correct timing. The objective of this review is to provide a comprehensive analysis of the research pertaining to herbicide use in landscape planting beds and present 1) the advantages and disadvantages of common chemical weed control strategies, 2) the most effective preemergence and postemergence herbicides in various landscape scenarios, 3) potential environmental concerns pertaining to improper application of herbicides, and 4) highlight knowledge gaps where additional research is needed or improvements could be made.
Market researchers have found that nursery and greenhouse production practices that reduce plastic use can increase consumer interest. However, there are broader crop performance, production efficiency, and environmental factors that must be considered before adopting containers made with alternative materials. This review highlights current commercially available alternative containers and parent materials. In addition, findings from recent and ongoing nursery, greenhouse, and landscape trials are synthesized, identifying common themes, inconsistencies, research gaps, and future research needs.
In recent years, biocontainers have been marketed as sustainable alternatives to petroleum-based containers in the green industry. However, biocontainers constructed with plant materials that are highly porous in nature (e.g., peat, wood fiber, straw) tend to require more frequent irrigation than conventional plastic products. As irrigation water sources become less abundant and more expensive, growers must consider water consumption in any assessment of their economic and environmental viability. This project evaluated plant growth and total water consumption for nine different biocontainers (seven organic alternatives, and two recently developed bioplastic alternatives) and a plastic control used to produce a short-term greenhouse crop, ‘Yellow Madness’ petunia (Petunia ×hybrida). Dry shoot weight and total water consumption differed by container type, with some of the more porous containers (wood fiber, manure, and straw) requiring more water and producing smaller plants by the end of the trial period. Intuitively, the more impervious plastic, bioplastic, and solid rice hull containers required the least irrigation to maintain soil moisture levels, though shoot dry weights varied among this group. Shoot dry weight was highest with the bioplastic sleeve and slotted rice hull containers. However, the latter of these two containers required a greater volume of water to stay above the drying threshold. Findings from this research suggest the new bioplastic sleeve may be a promising alternative to conventional plastic containers given the current production process.
Long used as a source of food, beverages, and fiber, Agave exhibits potential to be cultivated as a crop to produce alternative sweeteners, bioenergy, and a variety of other end uses. However, little is known regarding the productivity levels of Agave when grown in saline soils in semiarid regions. Hydroponic experiments were carried out to evaluate the effects of salinity on biomass accumulation and nutrient levels of young plants of Agave parryi, Agave utahensis ssp. kaibabensis, Agave utahensis ssp. utahensis, and Agave weberi. Salinity treatments (0.6, 3.0, 6.0, and 9.0 dS·m−1) were imposed in each experiment. Both subspecies of A. utahensis were sensitive to salt treatments. In the higher salinity treatments, A. utahensis ssp. utahensis exhibited high mortality; both subspecies had lower plant dry weights. Agave parryi was more tolerant, but experienced a decrease in plant dry weight in the 9.0 dS·m−1 treatment. The biomass of A. weberi was unaffected by any level of salinity. Calcium, Mg, S, and Mn levels decreased in both A. parryi and A. weberi at higher salinity levels. Potassium and P levels in A. parryi decreased in the higher salt treatments. Decreases in nutrients were not severe enough to cause any apparent nutrient deficiencies in A. parryi and A. weberi. Agave parryi and A. weberi tolerated salinity at higher levels than expected, and may show promise for cultivation in saline soils.
Mulches have many positive benefits for the production of plants, ranging from weed suppression to water conservation. In this study, a novel method of using plastic film mulch for container-grown plants was evaluated. Plots of 25 japanese privet (Ligustrum japonicum) in #1 (2.5 qt) nonspaced containers were wrapped with 1.25-mil white or black plastic mulch over the top and sides of containers. Small plants were planted through the plastic and grown for 22 weeks with overhead irrigation. Water application amount was determined by moisture sensors placed in the substrate of each treatment. Plant growth, dry weights (DWs), weed fresh weights, weeding time, substrate electrical conductivity (EC), substrate temperature, total water applied, and mulch costs were determined. Black plastic (BP) and white plastic (WP) mulch reduced water applied by 82% and 91%, respectively, compared with the nontreated control (NT). Nontreated control plants grew faster and had greater DW at the end of the experiment. Mulched containers had fewer weeds and required less labor to remove weeds than the NT treatment. Substrate EC level was greater in BP and WP treatments than for the NT after 20 weeks, and plastic mulch did not result in different substrate temperatures. Plastic mulch added $4.94/1000 containers ($2.24 input cost and $2.70 removal cost) to production costs, not including disposal costs. This novel method of mulching nonspaced plants reduced irrigation water, herbicide applications, and weeding labor, but probably added 2–3 weeks to finish time.
Frequent episodes of water stress in managed landscapes have led the nursery industry to look for attractive woody species that perform well under extreme conditions of drought and flooding. We chose to evaluate three taxa with highly localized natural distributions in the United States, Calycanthus occidentalis (north–central California), Fraxinus anomala (northeastern Utah), and Pinckneya pubens (northeastern Florida), each of which may merit further use under cultivated conditions beyond their respective ranges. Although widespread cultivation of each taxon may not be possible as a result of limitations related to cold hardiness, we hypothesized that each species can tolerate extremes in soil moisture availability more so than their native habitats imply. Our objective was to characterize, under greenhouse conditions, how the quantity of soil water affects gas exchange of potted plants of each species. Plants were divided into five groups, each exposed to treatment conditions ranging from complete submersion to severe drought. Complete submersion killed plants of C. occidentalis and F. anomala, although in drought or severe drought conditions, C. occidentalis plants had lower net photosynthesis and less leaf area and plant dry weight than control plants. Net photosynthesis, leaf area, and plant dry weight of partially flooded plants, however, were not found to be significantly less than that of the control plants. Mean net photosynthetic levels and plant dry weights of severe drought, drought, and control F. anomala did not differ. While severe drought plants of P. pubens exhibited much lower levels of net photosynthesis, but not plant dry weights or leaf area, than the control plants, those exposed to drought, partial flood, and complete submersion were not found to differ in net photosynthesis levels from the control plants. Due to the sustained tolerance of F. anomala and P. pubens to a range of extreme soil moisture conditions, as exhibited by net photosynthetic responses, carbon accumulation, and survival, we conclude that use of these species in landscapes is warranted if invasiveness and other potential problems are not identified. Calycanthus occidentalis, however, appears unsuitable for cultivation in areas with organic soils greater than ≈66% and lower than ≈30% soil moisture content as a result of its high mortality in flooded conditions and poor physiological responses under dry conditions.
Transplanted trees are exposed to numerous stresses from the time of harvest until establishment in the landscape. Although an individual stress factor may be the sole cause of plant death or decline, it is more likely a combination of stress factors cause reduced growth or death after planting. In an effort to isolate the stresses associated with three critical stages in the transplanting process (i.e., initial harvest, handling, and transport), 5-cm-caliper, balled-and-burlapped Acer rubrum L. ‘Red Sunset’ (red maple) and Acer platanoides L. ‘Pond’ (Norway maple) trees at three sites (Urbana, IL; Union, IL; and Manitowoc, WI) were subjected to three treatments: root-pruned, handled, and transported. Effects of water stress, root severance, and root-ball disruption on twig elongation and tree survival were measured for each treatment and compared with unaltered control trees. Twig elongation was greater in unaltered control trees when compared with root-pruned trees. In addition, root-pruned trees exhibited greater twig elongation when compared with either handled or transported trees suggesting that although initial root severance did affect growth, it was not as detrimental as lifting and handling. In addition, twig elongation was not different between handled and transported trees. Water potential measurements ranged from –0.2 to –2.0 MPa, suggesting water stress was not a critical factor during the time of transplanting. Similarly, root-ball soil moisture varied little between treatments over the course of transplanting. Results suggest rough handling before and after transport should be minimized in an effort to maximize growth and transplant success.