Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Andrew Jeffers x
Clear All Modify Search

Production of high-quality nursery liners has long been a foundation principle for enabling success and business longevity in the competitive nursery industry. Unfortunately, many different characteristics can be used to define liner “quality,” ranging from physiological parameters measurable in scientific studies field establishment success and transplant production performance to gut-level hunches on the part of growers. A more complete understanding of what buyers are looking for in a bare-root liner would significantly enhance the success of producers in meeting the demands of end-users. As a result, a choice study involving a point-of-purchase simulation was designed to assess preferences of green industry professionals when viewing bare-root 1 + 0 nursery liners. A conjoint design was used for this study and involved six key attributes of liners: 1) number of first-order lateral roots (FOLR); 2) price; 3) production region; and uniformities of 4) height; 5) canopy density; and 6) liner caliper. A visual survey based on a large, color graphic depicting six distinct bare-root 1 + 0 liners with different combinations of attributes was administered together with a demographic questionnaire at four different green industry tradeshows and extension grower education and outreach venues in the southeastern United States. Results from 248 completed surveys corroborated previously reported results suggesting that high FOLR is the most important attribute influencing preference for 1 + 0 liner products followed by uniform liner height and canopy density. Contrary to a priori expectations, neither price nor region of production substantially influenced product preference. Utility values were calculated for each attribute level using outputs from the experimental model. These values can be used by growers to adjust production methods to improve liners with attributes that end-users value most. In addition, growers will be able to better estimate product ratings, redirect marketing efforts, and assess sales potential for various bare-root 1 + 0 liner products in U.S. markets.

Free access

The US landscape industry consists of 632,000 businesses with >1 million persons employed in 2022. The most common service that landscape service providers (LSPs) perform is pest management. Over the past 25 years, LSPs have been challenged to adopt more holistic approaches to pest management via the use of nonchemical and less toxic chemical controls. Integrated pest management (IPM), specifically scouting, may be a useful approach for LSPs to manage pests more sustainably and market new services, such as biological control releases. Scant literature is available on LSP scouting practices or consumer acceptance of scouting services. The goal of this study was to determine if IPM-aware consumers were more likely to purchase a scouting program offered by an LSP. An online survey was distributed across the United States through a third-party panel service. The final sample included 928 usable responses. Data were analyzed using a binary logistic regression model. Fifty-seven percent of respondents reported having some knowledge or were very knowledgeable of IPM. Respondents 65 years of age and older were 13.1% points less likely to purchase a scouting service. Education level did not influence purchase likelihood. Consumer knowledge of IPM had a positive influence on the purchase likelihood, respondents with “some knowledge” (5.6%) and “very knowledgeable” (8.6%) were more likely to buy IPM services. Further, if the consumer was open to purchasing the scouting program, it is plausible that they might be more willing to allow an LSP to use a combination of chemical and nonchemical methods to manage pests.

Open Access

Constructed wetlands have been used for decades in agricultural settings to remediate nutrients and other agrichemicals from irrigation runoff and drainage; however, little is known about the presence and distribution of Phytophthora species within irrigation runoff water being treated in constructed wetlands. Therefore, we collected plant samples from within vegetated runoff collection channels and treatment stages of two constructed wetland systems receiving irrigation runoff at a commercial plant nursery in Cairo, GA, to determine if roots of wetland plants were infested by species of Phytophthora. Samples were collected 12 times, at 1- to 2-month intervals, over a 19-month period, from Mar. 2011 through Sept. 2012. The sample period covered all four seasons of the year, so we could determine if the association of Phytophthora species with roots of specific plant species varied with season. Approximately 340 samples from 14 wetland plant species were collected, and 22 isolates of Phytophthora species were recovered. Phytophthora species were typically isolated from plants in channels receiving runoff water directly from plant production areas; Phytophthora species were not detected on plants where water leaves the nursery. No seasonal patterns were observed in plant infestation or presence of species of Phytophthora. In fact, Phytophthora species were rarely found to be associated with the roots of the wetland plants collected; species of Phytophthora were found infesting roots of only 6.5% of the 336 plants sampled. Species of Phytophthora were not found to be associated with the roots of golden canna (Canna flaccida), lamp rush (Juncus effusus var. solutus), duckweed (Lemna valdiviana), or sedges (Carex sp.) during the study period. The exotic invasive plant species marsh dayflower [Murdannia keisak (33% of samples infested)] and alligatorweed [Alternanthera philoxeroides (15% of samples infested)] were found to have the first and third highest, respectively, incidences of infestation, with smooth beggartick (Bidens laevis) having the second highest incidence of samples infested (22%). Management of invasive species in drainage canals and constructed wetland systems may be critical because of their potential propensity toward infestation by Phytophthora species. Plant species recommended for further investigation for use in constructed wetlands to remediate irrigation runoff include golden canna, marsh pennywort (Hydrocotyle umbellata), pickerelweed (Pontederia cordata), and broadleaf cattail (Typha latifolia). The results from this study provide an important first look at the associations between species of Phytophthora and wetland plants in constructed wetland systems treating irrigation runoff and will serve to further optimize the design of constructed wetlands and other vegetation-based treatment technologies for the removal of plant pathogens from irrigation runoff.

Open Access

Ornamental plant growers must be able to accurately assess production costs associated with woody liner stock to gain profit potential in a highly competitive industry. Fixed and variable cost inputs may not be intuitive or readily apparent to growers and may even differ between common types of production in the trade. To help liner producers identify profit-based price points for their woody ornamental liner stock, we modeled costs associated with producing familiar species and cultivars of a representative deciduous shade tree, a broadleaf evergreen, and a needle leaf evergreen liner. Production costs are projected down to individual plant units for each of the three most common liner production systems, including a field ground bed system, a polyhouse-covered (plant protection structure sheathed with one layer of 6-mil polyethylene film) ground bed system, and a polyhouse-covered container system. Production costs for individual plants varied due to the actual growing space available within each system. The field ground bed system offered greatest flexibility in crop planting density, with cost potentially distributed among the largest number of salable units. In addition to modeled costs, advantages and disadvantages of each liner cropping system are discussed.

Full access