Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Andrew Hubbard x
Clear All Modify Search

Metamitron is a relatively new postbloom thinning compound for pome fruits that inhibits the photosystem II (PS II) pathway of photosynthesis. Reduced assimilation of carbohydrate by metamitron action may lead to a carbohydrate deficit that promotes fruit abscission. We have evaluated the thinning efficacy of metamitron rate and, to a limited extent, application timing for ‘Bartlett’ pear in five separate trials over 3 years (2015–17) in northern Oregon. Comparisons were made to a nontreated control and, depending on the trial, a commercial standard thinning compound [benzyladenine (6-BA) or abscisic acid (ABA)]. Application timings ranged between 7- and 16-mm fruit diameter depending on the trial. Metamitron markedly inhibited photosynthesis (PN), typically for a duration of 2 to 3 weeks, although longer persistence was observed in two trials. Generally, PN was reduced linearly with increasing metamitron rate, but the effect varied by rate and year and may have been enhanced by high temperatures. Metamitron effectively thinned in four of five trials whereby pear fruit set was negatively and linearly related to rate. Rates of 200 to 300 ppm were efficacious and produced target crop loads. In only one trial, increasing concentrations (600 ppm) led to greater thinning. Metamitron significantly thinned ‘Bartlett’ pears when applied between 10 and 13 mm. In contrast, early application timing (≈7 mm) had little effect on fruit abscission. Fruit size increased with decreasing crop load and thus was significantly improved by metamitron. Interaction between biological and environmental factors likely contributed to year-to-year variability in efficacy.

Open Access