Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Andrew B. Hollman x
Clear All Modify Search

Empirical observations suggest certain new cultivars of creeping bentgrass (Agrostis stolonifera L.) with high shoot density require more intensive topdressing and core aeration to control thatch compared to less dense cultivars such as `Penncross. In addition, a variety of Poa annua var. reptans Hausskn., `DW-184, has recently been released for putting green use but management requirements are undocumented. The objective of our project was to determine the core aeration and topdressing requirements for thatch management of creeping bentgrass cultivars `A-4, `G-2, and `Penncross as compared to `DW-184. Plots were established on a sand-based root zone and maintained as putting green turf for 3 years. A factorial treatment arrangement was used to assess the effects of core aeration and topdressing on thatch, topdressing removal, turf quality, and disease. Both `A-4 and `G-2 produced more organic matter as (thatch/mat) than `Penncross and `DW-184. Grass type, core aeration frequency, and topdressing regime affected the amount of topdressing removed by mowing. An interaction between grass type and topdressing regime showed biweekly topdressing with verticutting resulted in less topdressing removal from all grasses except `G-2 compared to monthly topdressing without verticutting. Since no more than 3% of the topdressing applied was removed from any single treatment, however, the overall impact of grass type, core aeration frequency, or topdressing regime are unlikely to affect turf response. Both `A-4 and `G-2 provided consistently better quality turf than `Penncross or `DW-184 at 3.2 mm mowing height, though `A-4 was more susceptible to dollar spot disease (Sclerotinia homeocarpa F.T. Bennett) than `Penncross or `G-2. Cultivation and topdressing methods for management of `A-4 and `G-2 bentgrasses do not differ substantially from `Penncross or `DW-184 creeping bluegrass.

Free access

As restrictions on water use, fertilization, and pesticide applications continue to increase, golf course superintendents will need to use grass species that require reduced inputs. The objective of this study was to evaluate alternative turfgrass species under low-input fairways conditions. In 2005, 17 species were established on native soil in St. Paul, MN. Each species was evaluated at three levels of traffic (zero, three, or six passes per week using a drum-type traffic simulator) and two mowing heights (1.90 and 2.54 cm). Data collected included turfgrass quality and percent living stand density. In 2006, velvet bentgrass (Agrostis canina L.), colonial bentgrass (Agrostis capillaris L.), and creeping bentgrass (Agrostis stolonifera L.) maintained acceptable quality in all treatment combinations. In 2007, Chewings fescue (Festuca rubra L. ssp. fallax) and sheep fescue (Festuca ovina L.) were the top-performing species regardless of treatment. Hard fescue (Festuca brevipila Tracey) performed poorly in Year 1 and well in Year 2. All other species did not perform at an acceptable level during the study. The results of this study indicate that sheep fescue, Chewings fescue, colonial bentgrass, and velvet bentgrass should be studied further for use on low-input golf course fairways in the northern United States.

Free access