Search Results
You are looking at 1 - 7 of 7 items for
- Author or Editor: Andre Luiz Biscaia Ribeiro da Silva x
High-value vegetable crops such as bell pepper (Capsicum annuum) are heavily fertilized by growers who seek to maximize yields. Field experiments were conducted in Spring 2016 and 2017 evaluating two liquid fertilizers with and without calcium (Ca), applied at three nitrogen (N) and potassium (K) levels in two varieties of bell pepper to determine whether current fertilizer recommendations were adequate and whether fertilizer source impacted fruit yield and quality. Plants were grown using plastic mulch and drip irrigation following standard production practices for the region. Two liquid fertilizer programs [7N–0P–5.8 (7–0–7) and 4N–0P–6.6K/9N–0P–0K–11Ca (4–0–8/CN9)] were applied twice weekly at three N rates (175, 200, and 225 lb/acre N). Yield, cull rate, and foliar nutrient concentrations were measured. In 2016, total marketable yields were greatest [910 boxes/acre (28 lb/box)] and blossom end rot (BER) incidence (14.4%) lowest in plants grown with the supplemental Ca (4–0–8/C9 fertilizer) at 175 lb/acre N. Cull rates increased in plants grown without supplemental Ca during the season (7–0–7 fertilizer), with BER incidence ranging from 22.9% to 27.2%. Yields ranged from 590 to 740 boxes/acre in plants grown without supplemental Ca in 2016. In 2017, yields ranged from 530 to 790 boxes/acre in plants grown with supplemental Ca at 200 and 175 lb/acre N, respectively. Culls due to BER were lower in 2017 than in 2016. In 2016, BER incidence was greater in ‘PSO9979325’ compared with ‘Antebellum’, despite no differences in total yield. Foliar nutrient levels were largely unaffected by fertilizer program; however, foliar N and K concentrations increased with the rate of N and K fertilization. The results of this study suggest that using liquid fertilizer program containing some Ca may benefit bell pepper growers in some, but not all, growing seasons.
Georgia is a leading fresh market cabbage (Brassica oleracea var. capitata) producer. Current recommendations for bare-ground cabbage grown in the Coastal Plain of Georgia indicate 175 to 225 lb/acre nitrogen (N). Approximately one-third of N fertilizer is recommended at planting, with two or three additional side-dress applications during the season. Growers have begun banding liquid fertilizer between four and six times during the season to reduce N leaching and enhance productivity. To determine the validity of current recommendations as well as the efficacy of applying periodic liquid fertilizer throughout the growing season, field experiments were conducted in Tifton, GA in Fall 2016 and 2017 with the cabbage cultivar Cheers. Fertilizer N rates were 175, 200, 225, and 250 lb/acre N applied using equivalent preplant fertilizer (50 lb/acre N) with two posttransplant applications of a granular fertilizer (27–0P–0K–5Ca) or six applications of a liquid fertilizer (9N–0P–0K–11Ca). A factorial, randomized, complete block design was used. There were no interactions among fertilizer program, N rate, or year for cabbage yield or nutrient concentrations. Total yield was unaffected by the N rate. However, plants fertilized with the lowest N rate (175 lb/acre N) had the lowest yields from the first two harvests compared with the other N rates. Nutrient concentrations were affected by year, with 2017 having greater concentrations of most macronutrients compared with 2016. In conclusion, the application of 175 lb/acre N led to a potential delay in harvest, but all other N rates were equal. The application method did not impact yield or earliness, suggesting that current recommendations for fertilizer applications after planting cabbage in Georgia are adequate.
Parsley seeds are known for nonuniform and long germination; consequently, vegetable nurseries commonly use priming techniques to improve the production of parsley seedlings. The objectives of this study were 1) to characterize the imbibition curve of parsley seeds, 2) to evaluate the effect of different priming agents on parsley seedling production, and ultimately 3) to compare priming techniques for emergence and vigor of parsley’s seedlings, thus providing an optimal priming strategy for parsley seedling production. Using three priming agents—water (seeds imbibed for 24, 48, 72, and 96 hours), polyethylene glycol 6000 (PEG6000) (seeds imbibed at –0.5, –1.0, –1.5, and –2.0 MPa for 29, 58, 87, and 116 hours), and gibberellic acid (GA) (seeds imbibed at 0.5, 1.0, 1.5, and 2.0 g·L−1 a.i. of solution for 15, 30, 45, and 60 minutes), and two parsley cultivars (Krausa and Titan), three experiments evaluated parsley seedling parameters, including emergence speed index (ESI) and total emergence (TE) in a complete randomized block design (n = 4) each. In Expt. 1 (hydropriming), increasing water imbibition time (IT) reduced ESI on both parsley cultivars. In addition, the TE quadratically reduced with the increase of water IT. In Expt. 2 (osmopriming), there was no significant main effect or interaction of treatments on ESI. Regardless of PEG6000 concentration, the TE had a linear increase with the increase of IT for cultivar Krausa but not for cultivar Titan. In Expt. 3 (hormonal priming), there was a significant increase in ESI and TE with the increase in GA rate. Ultimately, strategies for analysis of best priming were water at 24 hours of IT, PEG6000 at –2.0 MPa for 116 hours of IT, and GA at 2.0 g·L−1 a.i. of solution for 15 minutes of IT. Once compared with an untreated seeds treatment, priming strategies of water imbibition for 24 hours and PEG6000 at –2.0 MPa for 116 hours had the highest ESI and TE.
The use of resistant cultivars against Xanthomonas campestris pv. campestris (Xcc) is considered a critical management practice for black rot (BR) management in cabbage (Brassica oleracea var. capitata). Although most studies that have evaluated resistance to BR were conducted in greenhouses without accounting for yield, there is a clear need to investigate cultivar performance under field conditions. The objectives of this study were to evaluate commercial cabbage cultivars for resistance to BR and determine yield and head quality under field conditions. Field experiments with eight cultivars (Acclaim, Bravo, Capture, Celebrate, Cheers, Melissa, Monterey, and TCA-549) were conducted in two cabbage growing seasons, Fall 2018 and Spring 2019. Fields were spray-inoculated with Xcc (3 × 105 cfu/mL) at 35 and 49 days after transplanting in Fall 2018 and Spring 2019, respectively. Cabbage BR severity was evaluated at weekly intervals starting from 7 days postinoculation (DPI) until harvest. Marketable and unmarketable yields and cabbage head quality were measured at harvest. Cabbage BR symptoms were detected in all tested cultivars for both growing seasons with initial symptoms observed as early as 28 and 21 DPI in Fall 2018 and Spring 2019, respectively. Severity of cabbage BR at harvest was significantly greater in Fall 2018 compared with Spring 2019, whereas marketable yield was significantly higher in Spring 2019 (45,169 lb/acre) compared with Fall 2018 (26,370 lb/acre). In both growing seasons, ‘TCA-549’ had the lowest severity of BR and ‘Melissa’ had the highest severity of BR. Area under the disease progress curve (AUDPC) was 175 and 13 for ‘TCA-549’ in Fall 2018 and Spring 2019, respectively. The AUDPC for ‘Melissa’ in Fall 2018 and Spring 2019 were 2376 and 905, respectively. Regardless of growing season, cabbage marketable yield was higher for ‘Acclaim’ (51,760 lb/acre) compared with all other cultivars; however, there was no significant difference between Acclaim and TCA-549 (42,934 lb/acre) for cabbage marketable yield. Cabbage marketable yield was the lowest for cultivars Melissa (18,275 lb/acre) and Capture (24,236 lb/acre). Overall, there was a significant correlation between BR disease severity and cabbage marketable and unmarketable yields. Increasing the BR severity decreased cabbage marketability due to an increase in unmarketable yields. Continued development of cultivar resistance to BR is important for cabbage production in the southeastern United States, given the favorable conditions for disease development. The use of cultivars with low susceptibility, pathogen-free seeds, crop rotation, and proper spraying programs should be considered the best management practice for BR disease.
Large populations of sweetpotato whiteflies (Bemisia tabaci) have become more regular occurrences during the fall months in parts of the southeastern United States. Large populations of sweetpotato whiteflies have resulted in a significant increase in the incidence of sweetpotato whitefly-transmitted viruses, particularly the cucurbit leaf crumple virus (CuLCrV), which has the potential to cause complete yield loss of fall-planted yellow squash and zucchini (Cucurbita pepo). This study evaluated commercial cultivars of yellow squash and zucchini for resistance against CuLCrV and estimated the yield and fruit quality under environmental conditions during the fall growing season in the southeastern United States. A factorial experimental design was conducted with nine yellow squash and 11 zucchini cultivars during Fall 2017, Fall 2018, and Fall 2019 in Tifton, GA. In situ weather stations monitored the weather conditions during growing seasons, and yellow pest monitor cards monitored the sweetpotato whitefly populations in 2018 and 2019. During all growing seasons, yellow squash and zucchini plants were rated weekly for the severity of CuLCrV. Harvests were conducted 12 times during each season, and fruit were graded as fancy, medium, and culls. Rainfall distribution directly affected the sweetpotato whitefly populations during the production year. In 2018, frequent rainfall events created field conditions that reduced the sweetpotato whitefly populations compared with those during 2017 and 2019. The severity of CuLCrV negatively impacted both the yield and quality of fruit of yellow squash and zucchini, and no resistant commercial cultivars of yellow squash or zucchini were identified. Nonetheless, the yellow squash cultivars Lioness, Gold Prize, and Grand Prize, and the zucchini cultivars SV6009YG and SV0914YG had the highest yields when subjected to the highest sweetpotato whitefly populations during the study.
Soil nitrogen (N) is easily leached in cabbage (Brassica oleracea var. capitata) production areas of southeastern United States characterized by sandy soils with low water-holding capacity. Soil N leaching in these areas is increased after rainfall events; consequently, growers increase the fertilizer N application to protect against N deficiencies and yield loss. The objective of this study was to evaluate the effects of three fertilizer N rates on yield and head quality for common cabbage cultivars used by Florida and Georgia growers during four cabbage growing seasons. Field experiments were conducted in Hastings, FL, in 2016 and 2017, and in Tifton, GA, in 2018 and 2019. A randomized complete block design was used with a split-plot design of fertilizer N rate and cabbage cultivar. Fertilizer N rate treatments consisted of the application of 170, 225, and 280 lb/acre N and were assigned as the main plot. Cabbage cultivars Bravo, Bronco, Bruno, Capture, Cheers, and Ramada were assigned as the sub-plots. Weather conditions were monitored during all growing seasons, and total, marketable, and unmarketable yields, as well as cabbage head polar and equatorial diameters, and core height and width were measured. In Florida, there was a significant interaction for growing season and fertilizer N rate. The Florida 2016 cabbage season experienced 10.5 inches of rainfall, and fertilizer N rates had no effect on cabbage yields. Total and marketable yield averaged 45,391 and 38,618 lb/acre among fertilizer N rates in 2016, respectively. Rainfall accumulated 2.1 inches during the 2017 study in Florida, which was less than the crop evapotranspiration. In response, total and marketable yield were higher for the applications of 225 lb/acre N (51,865 and 49,335 lb/acre, respectively) and 280 lb/acre N (54,564 and 52,219 lb/acre, respectively) compared with the application of 170 lb/acre N (47,929 and 43,710 lb/acre, respectively). In Georgia, there were no significant interactions between production season and fertilizer N rates. In addition, there were no significant main effects of season or fertilizer N rate. Rainfall events accumulated 20.9 and 7.8 inches during the 2018 and 2019 growing seasons, respectively. Total and marketable yields averaged 37,290 and 33,355 lb/acre, respectively for the two growing seasons in Georgia. Cabbage cultivar had no interaction with fertilizer N rate in any location. ‘Cheers’ (52,706 lb/acre) had the highest total yield in Florida, and ‘Ramada’ (38,462 lb/acre) and ‘Bronco’ (39,379 lb/acre) had the highest total yields in Georgia. In conclusion, the application of 225 lb/acre N was sufficient to sustain cabbage yields, but yields of the 170- and 225-lb/acre N treatments were not different when rainfall events exceeded crop evapotranspiration.
Summer squash (Cucurbita pepo L.) is a major vegetable crop produced in Georgia and Florida during the fall season. This production is vulnerable to whitefly (Bemisisia tabaci Genn.)-transmitted viruses that lead to severe yield losses. Over the past several years, whitefly populations have increased during the fall, thus leading to an increase in whitefly-transmitted viruses such as Cucurbit leaf crumple virus (CuLCrV) and Cucurbit yellow stunting disorder virus (CYSDV). Whitefly management for summer squash relies on the use of insecticides and can be costly without providing adequate management of the viruses. Deployment of host resistance to whiteflies and their transmitted viruses (CuLCrV and CYSDV) is the best strategy for mitigating yield loss of summer squash; however, no resistant cultivars are commercially available. In the current study, resistance or tolerance to whiteflies, CuLCrV, and CYSDV was determined for squash germplasm from the U.S. Department of Agriculture (USDA) Germplasm Resources Information Network (GRIN), university breeding programs, and commercial companies in Georgia and Florida across 2 years. In both locations and years, visual virus symptom severity scores were collected and a quantitative polymerase chain reaction (qPCR) was used to determine the CuLCrV viral load and CYSDV presence in Georgia. Whitefly-induced feeding damage was evaluated by directly assessing the intensity of silverleaf symptoms and visual counts of whitefly adults on the foliage in the field or in photographs. Virus symptom severity was lower in C. moschata Duchesne ex Poir. genotypes, namely, PI 550689, PI 550692, PI 550694, PI 653064, and Squash Betternut 900, than in other evaluated genotypes. Two C. pepo accessions were common between both locations for viral severity (PI 442294) or viral severity and viral load (PI 171625). Lower CuLCrV loads were identified in C. ecuadorensis Cutler & Whitaker (PI 540895), and C. okeechobeensis (Small) L.H.Bailey (PI 540900) than other evaluated genotypes. Four genotypes tested negative for CYSDV during both years: C. pepo (PI 507882), C. moschata (PI 483345), C. ecuadorensis (PI 390455), and C. okeechobeensis (PI 540900); they are potential sources of resistance. Six C. moschata accessions (PI 211999, PI 550690, PI 550692, PI 550694, PI 634982, and PI 653064) showed high tolerance to silverleaf disorder and had the lowest adult whitefly counts. Collectively, the accessions identified in the current study are potential sources of resistance or tolerance to whitefly and whitefly-transmitted viruses (CuLCrV and CYSDV).