Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: Amy K. Szewc-McFadden x
- HortScience x
To comprehend genetic identity and relatedness in Malus germplasm held in situ and ex situ, we are employing simple sequence repeat (SSR) DNA fragment information in combination with passport and horticultural data. SSRs offer certain advantages for characterizing large arrays of germplasm efficiently. They are abundantly dispersed throughout plant genomes and are exceedingly polymorphic. In addition, they can be PCR-amplified and detected by automated fluorescence-based technology. A size-fractionated DNA library of M. ×domestica cv Golden Delicious was screened to identify SSR loci. Eight loci were found to be reliably informative and were used to prepare locus-specific primer pairs. Characterization of the 75 M. ×domestica accessions included in the core subset of the USDA-ARS Malus germplasm collection revealed six of the eight loci were polymorphic within the array. The number of alleles per locus ranged from two to 21. Throughput was enhanced by multiplexing, allowing simultaneous use of two or three primer pairs. With improved genetic characterization of Malus germplasm, we intend to better develop and relate the core subset to the rest of the collection and to in situ Malus genetic resources. SSR markers appear to be an efficient and reliable tool to expedite this process.
A diverse collection of 133 Malus species and hybrids from the USDA Plant Genetic Resources Unit's core subset collection was screened with five simple sequence repeat (SSR) primer pairs in order to determine genetic identities and overall levels of genetic variation. The number of amplification products (alleles) per locus (primer pair) in this collection ranged from 6 to 39, with some genotypes showing complex banding patterns of up to four products per locus, suggesting that duplication events may have occurred within the genome. Five primer sets unequivocally differentiated all but 10 pairs of genotypes in the collection, with seven of these 10 being pairs of the same species. Within three of the species holdings surveyed, M. honanensis, M. sargentii, and M. sikkimensis, no genetic variation was revealed with the SSR markers. The discrimination power for the combined loci in this collection was nearly one, which indicates that the likelihood of two genetically different accessions sharing the same alleles at all the loci included in this study would be nearly impossible. Coupled with results from a previous survey of M. × domestica accessions, this finding suggests that with five SSR primer pairs, the majority of the Malus holdings could be assigned a unique fingerprint identity. The average direct count heterozygosity over all loci was 0.620, ranging in value from 0.293 to 0.871 over individual loci. These heterozygosity counts will be compared with a survey of naturally occurring M. sieversii to determine whether current repository holdings are representative of the overall levels of diversity occurring in Malus. Information generated with this study, coupled with passport and horticultural data will inform curatorial decisions regarding deaccessioning of duplicate holdings and plans for future germplasm collections.