Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Ami N. Erickson x
Clear All Modify Search

High temperature reduces fruit set in bell pepper [Capsicum annuum L. var. annuum (Grossum Group)], and reduction of pepper productivity, resulting from high temperature, may be a direct effect of temperature or an indirect effect of water stress induced by increased vapor pressure deficits (VPDs) at high temperature. We evaluated responses of plant growth, reproduction, net photosynthesis (PN), chlorophyll fluorescence, predawn respiration, leaf water potential, and stomatal conductance of `Ace' and `Bell Boy' bell pepper to elevated temperature (33 °C) with increased VPD (2.1 kPa) or elevated temperature with no increase in VPD (1.1 kPa). VPD had no effect on flower number or fruit set and did not adversely influence the physiological processes measured. Therefore, deleterious effects of high temperature on pepper fruit set does not appear to be temperature induced water stress, but is more likely a direct temperature response. Elevated temperature decreased fruit set but not flower production. Gas exchange measurements suggest failure to set fruit was not due to reduced leaf photosynthesis.

Free access

Reduction of floral number in Capsicum annuum has been observed during growth at high temperature. To determine whether decreased flower production or increased flower abscission is a direct response to high temperatures or a response to water stress induced by high temperatures, we compared flowers and fruit produced and flowers aborted to leaf growth rate, osmotic potential, stomatal conductance, and chlorophyll fluorescence of two cultivars. To determine the stage(s) of floral development that are most sensitive to high temperatures, flower buds were wax-embedded and examined at each stage of development during heat treatment. Rate of floral development also was examined. At first visible floral bud initiation, plants were transferred to each of three controlled environment growth chambers with set temperatures and vapor pressure deficits (VPD) of 25°C, 1.1 kPa; 33°C, 1.1 kPa; and 33°C, 2.1 kPa. Flower bud production and leaf growth rate were not significantly affected by high temperatures. Pepper fruit set, however, was inhibited at 33°C at either VPD. Preliminary water relations data suggested that water potentials were more negative under high temperature conditions. Differences in leaf fluorescence were statistically significant for temperature treatments, but not for VPD. Temperature is the primary factor in the decrease of fruit production in pepper. Decreased production is due to flower abortion and not to decreased flower initiation or plant growth.

Free access