Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Amando Ordás x
  • Refine by Access: All x
Clear All Modify Search
Free access

Bernardo Ordás, Rosa A. Malvar, Amando Ordás, and Pedro Revilla

Reciprocal effects in sugary × sugary enhancer hybrids of sweet corn (Zea mays L.) have been only reported for sugar content and in a very limited number of hybrids and have not been determined for agronomic traits. By evaluating 34 sugary × sugary enhancer hybrids with reciprocals in three environments, the main objectives of this work were, for agronomic and quality traits, to determine the presence or absence of reciprocal differences in the sugary × sugary enhancer hybrids, to study the interest of using sugary inbreds as seed parents of the sugary × sugary enhancer hybrids, and to determine if reciprocal differences are interacting with different genetic backgrounds and different environments. For agronomic traits as emergence, early vigor, and silking date, significant (P ≤ 0.05) reciprocal differences were found in many of the sugary × sugary enhancer hybrids, but for quality traits, significant (P ≤ 0.05) reciprocal differences were only found in a few hybrids. The sugary lines as seed parents of the crosses tended to have on average a favorable effect on agronomic traits, but this was only considerable in some environmental conditions. The difference between the sugary and sugary enhancer lines as seed parent of the crosses was strongly influenced by the genetic background.

Free access

Guillermo Padilla, María Elena Cartea, and Amando Ordás

Four clustering methods were compared for classification of a collection of 148 kale landraces (Brassica oleracea L. acephala group) from northwestern Spain based on morphologic characters: the unweighted pair group method using arithmetic averages (UPGMA) and the Ward method, hierarchical cluster algorithms, and the modified location model (MLM) applied to both the UPGMA and the Ward method (UPGMA-MLM and Ward-MLM, respectively). Comparisons were based on five criteria and on subjective considerations about the structure of each method and the characteristics of the material evaluated. Although the UPGMA-MLM was superior according to the objective criteria, its slight advantage with respect to the Ward-MLM strategy did not overcome the fact that the initial UPGMA cluster generated a classification with little value. The Ward-MLM strategy generated five homogeneous groups with defined morphologic characteristics. Moreover, the Ward-MLM strategy allowed the identification of redundant landraces, which would permit the number of accessions in further critical trials to be reduced.

Free access

Bernardo Ordás, Pedro Revilla, Pilar Soengas, Amando Ordás, and Rosa A. Malvar

The better emergence and seedling vigor of sweet corn (Zea mays L.) hybrids homozygous for the gene sugary1 (su1) make them more suitable for cultivation under European Atlantic conditions (cold, wet spring) than those homozygous for other traits. Elite sweet corn inbreds homozygous for both su1 and sugary enhancer1 (se1) could improve the table quality of su1 hybrids. The su1se1 inbreds for improving su1su1 hybrid performance can be chosen in several ways. The aim of this paper was to identify donors among su1se1 inbreds that might improve the quality of su1 hybrids. Eight su1se1 inbreds were crossed with eight su1 inbreds that were parents of fifteen su1 hybrids. Hybrids and inbreds were cultivated next to one another in two locations in northwestern Spain in 1999 and 2000. Several possible estimators for identifying su1se1 inbred donors with favorable alleles lacking in the su1 hybrid were determined. These estimators included the relative number of favorable alleles present in the donor but absent in the hybrid (μǴ), predicted three-way cross (PTC), minimum upper bound (UBND), net improvement (NI), probability of the net gain of favorable alleles when there is complete dominance (PNGg), probability of the net gain of favorable alleles when there is partial dominance or epistasis (PNGceg), and general combining ability (GCA). μǴ and NI were chosen for improving hybrid table quality. These estimators indicate that table quality and other traits of su1 hybrids can be improved by using germplasm from the su1se1 inbred lines. The best donor of quality for most of the hybrids was the inbred line IL731a.

Free access

Pedro Revilla, William F. Tracy, Pilar Soengas, Bernardo Ordás, Amando Ordás, and Rosa Ana Malvar

The genes sugary1 (su1) and shrunken2 (sh2) are commonly used to produce sweet and super-sweet corn (Zea mays L.), respectively. In this work we compare corn borer [european corn borer (ECB) (Ostrinia nubilalis Hbn.) and pink stem borer (PSB) (Sesamia nonagrioides Lef.)] susceptibility in seven pairs of su1 and sh2 near-isogenic sweet corn inbreds (101t, C23, C40, C68, Ia453, Ia5125, and P39) and the relationship between corn borer resistance and vegetative phase transition. The seven pairs of near-isogenic inbreds were evaluated under corn borer infestation during 3 years in northwestern Spain. Differences among inbreds were significant for most of the traits, although resistance was partial. Ia5125su1 and C40su1 were the most resistant inbreds. Differences between a few pairs of near-isogenic su1 and sh2 strains were significant for some vegetative phase change and corn borer damage-related traits. Generally su1 strains flowered earlier, had a shorter juvenile phase, fewer PSB, and more ECB larvae than sh2 strains. However su1 and sh2 strains did not differ significantly for most traits related to phase transition and corn borer damage; notably ear damage was not significantly different between su1 and sh2 strains. These results suggest that theoretical and practical results of sweet corn (sugary1) breeding for corn borer resistance could be capitalized for super-sweet corn (shrunken2) breeding.

Free access

Pedro Revilla, Pablo Velasco, María Isabel Vales, Rosa Ana Malvar, and Amando Ordás

Field corn (Zea mays L. var. mays) cultivar heterosis could improve sweet corn (Zea mays L. var. rugosa Bonaf) heterotic patterns. Two Spanish field corn (Su) and two sweet corn (su) heterotic patterns have been reported previously. The objective of this study was to determine which sweet × field corn crosses could be used to improve sweet corn heterotic groups. A diallel among three sweet corn cultivars (`Country Gentleman', `Golden Bantam', and `Stowell's Evergreen') that are representative of the variability among modern sweet corn cultivars, and three field corn synthetic cultivars [`EPS6(S)C3', `EPS7(S)C3', and `EPS10'] representing the heterotic patterns involving Spanish field corn, was evaluated for 2 years at two locations in northwestern Spain. Differences in heterosis effects (h jj') and average heterosis (h) were significant for all traits except grain moisture. Differences for cultivar heterosis (h j) and specific heterosis (s jj') were significant for grain yield, plant height, and kernel row number. `EPS6(S)C3' had lower s jj' for yield in crosses to `Golden Bantam' than to `Stowell's Evergreen', while `EPS7(S)C3' had higher s jj' in crosses to `Golden Bantam' than to `Stowell's Evergreen'. The best crosses to establish enhanced sweet corn heterotic patterns involving Spanish maize would be `Golden Bantam' × `EPS6(S)C3' and `Stowell's Evergreen' × `EPS7(S)C3'. New sugary 1 cultivars would require preliminary cycles of intrapopulational recurrent selection for agronomic performance and flavor prior initiating an interpopulational recurrent selection program to enhance heterosis.

Free access

Pablo Velasco, Rosa A. Malvar, Ana Butrón, Pedro Revilla, and Amando Ordás

Pink stem borer (Sesamia nonagrioides Lef.) is one of the most important insect pests of corn (Zea mays L.) in southern Europe. The objectives of this work were to determine the level of resistance in different sweet corn inbreds and to identify sources of resistance to ear feeding by the pink stem borer. Twenty-eight sweet corn (su1 and su1se1) inbreds and four resistant field corn (Su1Se1) inbreds were evaluated for ear resistance at different sowing dates, under two methods of artificial infestation. There were significant differences between infestation methods for ears with damaged grain, husks, cobs, and shanks. The inbred×infestation method interaction was significant for general appearance of the ear. The most resistant inbreds were identified by using mean comparisons and principal component analysis of ear damage traits. All inbreds were damaged. Hence, resistance was incomplete and in need of improvement. EP59, H3, I5125, IL767b, and V7726 were the most resistant sweet corn inbreds, which did not differ significantly from A635, the most resistant field corn inbred. General appearance of the ear appears to be a good indicator of pink stem borer resistance and can be used in preliminary evaluation. Variability exists in the resistance of these sweet inbreds to the pink stem borer and the use of field corn inbreds may not be necessary in the improvement of resistance, although further research is needed to determine if the sources differ in the pertinent genes conferring resistance.

Free access

Pilar Soengas, Maria Elena Cartea, Pablo Velasco, Guillermo Padilla, and Amando Ordás

A Brassica napus L. crop called nabicol traditionally has been grown by farmers in northwestern Spain for many years and is an important horticultural product during the winter season. The relationship of nabicol to other B. napus crops has been studied based on simple sequence repeat (SSR) data. However, molecular and morphologic classifications often disagree. The objectives of this research were to study the morphologic and agronomic relationships of nabicol landraces to other B. napus crops and to compare those relationships with the ones already known, based on SSR data. Thirty-five B. napus populations from different geographic origins and uses were evaluated. Data were recorded on 17 morphologic and agronomic traits. Principal component analysis and cluster analysis were performed to classify the populations. Eight principal components (94% of the total variability) were standardized to produce the Mahalanobis' generalized distances, and a cluster analysis was conducted using the unweighted pair group method with arithmetic averages. There are no major differences between B. napus var. pabularia (DC.) Rchb. (nabicol, couve-nabiça, forage rape) and B. napus var. oleifera DC. (oilseed rape), and they probably share a common origin. Rape kale (B. napus var. pabularia) and rutabaga [B. napus var. napobrassica (L.) Rchb.] cultivars are separated from the rest and probably they have an independent origin or domestication. Molecular and morphologic classifications are complementary, and both are necessary to classify germplasm correctly and to clarify genetic relationships among B. napus crops.

Free access

Pilar Soengas, Pablo Velasco, Guillermo Padilla, Amando Ordás, and Maria Elena Cartea

Brassica napus includes economically important crops such as oilseed rape, rutabaga, and leaf rape. Other vegetable forms of Brassica napus, namely nabicol and couve-nabiça, are grown in northwestern Spain and north of Portugal, respectively, and their leaves are used for human consumption and fodder. The relationship of nabicol with other Brassica napus leafy crops was studied before, but its origin remained unclear. The aims of this work were to study the genetic relationships among nabicol landraces and other B. napus crops based on microsatellites and to relate the genotypic differences with the use of the crop. The relationship among 35 Brassica napus populations representing different crops was studied based on 16 microsatellite markers. An analysis of molecular variance was performed partitioning the total variance into three components. The source of variation resulting from groups was defined considering the main use of the crop and accounted for a smaller percentage of variation than other sources of variation, proving that this division is not real. Populations clustered into seven different clusters using a similarity coefficient of 0.82. No clear association was evident between clusters and the main use of populations, suggesting genetic differences among populations could reflect differences in their origin/breeding or domestication. Spanish nabicol could have originated from a sample of couve-nabiças, and couve-nabiças could be used to improve nabicol landraces, because they have a narrow genetic basis that limits their potential for breeding.