Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Allen Van Deynze x
Clear All Modify Search

Phytophthora capsici is one of the major pathogens found in pepper production, especially in bell pepper. Due to the high level of genetic diversity of the pathogen, bell pepper varieties with broad genetic resistance are essential for disease management. Criollo de Morelos – 334 (CM334), a landrace that has a high level of genetic resistance to P. capsici, has been used as the resistant source for P. capsici to generate a recombinant inbred line (RIL) population with the susceptible bell pepper cultivar Maor. From the resulting population, quantitative trait locus (QTL) models explaining resistance to each of four isolates of P. capsici were derived from QTL regions on three chromosomes using stepwiseqtl in R/qtl. A single region of chromosome 5 contained major QTL for resistance to each of the four isolates. Two isolate-specific QTL conferring resistance to isolates PWB53 and PWB106 were located on chromosomes 10 and 11, respectively. Both isolate-specific QTL had epistatic interactions with a major QTL on chromosome 5. Using the pepper reference genome and gene annotation, candidate genes for P. capsici resistance within 1.5-logarithm of odds (LOD) interval were identified. Based on functional annotations derived from Arabidopsis thaliana and solanaceous crop databases, multiple candidate genes related to resistance (R) gene complexes or to plant immune system were found under the QTL on all three chromosomes. A comparison of the locations of resistance QTL and previously identified horticultural QTL using the same population revealed tight linkage between resistance to P. capsici and a stem pubescence QTL o chromosome 10. Both candidate genes for P. capsici resistance and the linkages between resistance and horticultural traits could be applied for selection to broad resistance to P. capsici in bell pepper–breeding programs.

Free access

For many horticultural crops, selection is based on quality as well as yield. To investigate the distribution of trait variation and identify those attributes appropriate for developing selection indices, we collected and organized information related to fruit size, shape, color, soluble solids, acid, and yield traits for 143 processing tomato (Solanum lycopersicum L.) lines from North America. Evaluation of the germplasm panel was conducted in a multiyear, multilocation trial. Data were stored in a flat-file format and in a trait ontology database, providing a public archive. We estimated variance components and proportion of variance resulting from genetics for each trait. Genetic variance was low to moderate (range, 0.03–0.51) for most traits, indicating high environmental influence on trait expression and/or complex genetic architecture. Phenotypic values for each line were estimated across environments as best linear unbiased predictors (BLUPs). Principal components (PC) analysis using the trait BLUPs provided a means to assess which traits explained variation in the germplasm. The first two PCs explained 28.0% and 16.2% of the variance and were heavily weighted by measures of fruit shape and size. The third PC explained 12.9% of the phenotypic variance and was determined by fruit color and yield components. Trait BLUPs and the first three PCs were also used to explore the relationship between phenotypes and the origin of the accessions. We were able to differentiate germplasm for fruit size, fruit shape, yield, soluble solids, and color based on origin, indicating regional breeding programs provide a source of trait variation. These analyses suggest that multitrait selection indices could be established that encompass quality traits in addition to yield. However, such indices will need to balance trait correlations and be consistent with market valuation.

Free access