Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Allen L. Knight x
Clear All Modify Search

Increased trace gas emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are widely believed to be a primary cause of global warming. Agriculture is a large contributor to these emissions; however, its role in climate change is unique in that it can act as a source of trace gas emissions or it can act as a major sink. Furthermore, agriculture can significantly reduce emissions through changes in production management practices. Much of the research on agriculture’s role in mitigation of greenhouse gas (GHG) emissions has been conducted in row crops and pastures as well as forestry and animal production systems with little focus on contributions from specialty crop industries such as horticulture. Our objective was to determine efflux patterns of CO2, CH4, and N2O associated with three different fertilization methods (dibble, incorporated, and topdressed) commonly used in nursery container production. Weekly measurements indicated that CO2 fluxes were slightly lower when fertilizer was dibbled compared with the other two methods. Nitrous oxide fluxes were consistently highest when fertilizer was incorporated. Methane flux was generally low with few differences among treatments. Results from this study begin to provide data that can be used to implement mitigation strategies in container plant production, which will help growers adapt to possible emission regulations and benefit from future GHG mitigation or offset programs.

Free access

Particle film technology is a developing pest control system for tree fruit production systems. Trials were performed in Santiago, Chile, and York Springs, Pa., Wenatchee and Yakima, Wash., and Kearneysville, W. Va., to evaluate the effect of particle treatments on apple [Malus sylvestris (L.) Mill. var. domestica (Borkh) Manst.] leaf physiology, fruit yield, and fruit quality. Leaf carbon assimilation was increased and canopy temperatures were reduced by particle treatments in seven of the eight trials. Yield and/or fruit weight was increased by the particle treatments in seven of the eight trials. In Santiago and Kearneysville, a* values of the fruit surface were more positive in all trials although a* values were not increased in Wenatchee and Yakima. Results indicate that particle film technology is an effective tool in reducing heat stress in apple trees that may result in increased yield potential and quality.

Free access