Search Results
You are looking at 1 - 1 of 1 items for
- Author or Editor: Alison M. DeMarree x
We performed an economic analysis of five orchard production systems [Slender Pyramid/M.26 (840 trees/ha), Vertical Axis/M.9 (1538 trees/ha), Slender Axis/M.9 (2244 trees/ha), Tall Spindle/M.9 (3312 trees/ha), and Super Spindle (5382 trees/ha)] using composite yield and labor usage data from several replicated research plots in New York state. Other costs and fruit returns were averages from a group of commercial fruit farms in New York state. The systems varied in costs of establishment from a low of $18,431/ha for the Slender Pyramid system to high of $47,524/ha for the Super Spindle system. The large differences in establishment costs were largely related to tree density. All of the systems had a positive internal rate of return (IRR) and net present value (NPV) after 20 years. They ranged from a low of 7.5% IRR for the Slender Pyramid system to a high of 11.1% IRR for the Slender Axis system. Profitability, as measured by NPV, was curvilinearly related to tree density with intermediate densities giving greater profitability than the highest densities. The optimum density was 2600 trees/ha when NPV was calculated per hectare, but only 2200 trees/ha when NPV was calculated per $10,000 invested. The earliest break-even year was 10 for the Slender Axis and Tall Spindle systems. The latest break-even year was 13 for the Slender Pyramid. An estimate of the number of hectares required to produce a $100,000 annual profit to the business was 222 for the slender pyramid system and 84–104 ha of the three best systems (Super Spindle, Tall Spindle, and Slender Axis). The analysis revealed that efforts to control establishment costs of land, trees and support system can substantially increase lifetime profits.