Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Alejandro Alarcon* x
Clear All Modify Search

A phytoremediation study in a 3 × 3 × 2 factorial experimental design was conducted to determine the effect of Glomus intraradices (AMF) inoculation and inorganic fertilization on the growth and development of Lolium multiflorum cv. Passarel Plus, and on the degradation of total petroleum hydrocarbons (TPH). The 80-day study was done with pots containing sandy soil. Seedlings of L. multiflorum were transplanted to uncontaminated or soil contaminated with Arabian crude oil (ACO) at concentrations of 3000 and 15,000 mg·kg-1. Half of the seedlings were inoculated with 500 spores of AMF. Plants were fertilized with Long Ashton Nutrient Solution (LANS) at 0.5×, 1.0×, or 2.0× strength, modified to supply 30 μg·mL-1 P to maximize the AMF establishment. Total plant dry weight and leaf antioxidant activity were reduced by ACO when compared to control plants. The LANS fertilization enhanced plant growth under ACO-contamination, and allowed similar antioxidant activity in plants exposed to 15,000 mg·kg-1. Soil rhizosphere respiration was increased by LANS, particularly with 15,000 mg·kg-1 ACO. AMF inoculation did not enhance plant growth, antioxidant activity, or microbial respiration. The average root colonization was around 30% in contaminated and uncontaminated rhizospheres, indicating that the tolerance of AMF symbiosis to ACO. Greater TPH degradation was achieved in non-AMF plants at 3000 mg·kg-1 ACO in combination with 0.5× LANS. LANS-fertilization with 1.0× or 2.0× did not enhance TPH-degradation when compared to 0.5× LANS.

Free access

Arbuscular mycorhizal fungi (AMF) have been used in phytoremediation and can increase tolerance and growth of plants in contaminated environments. However, little is known about the influence AMF on plant growth to organic contaminants in soils. A greenhouse experiment was conducted to study the response of seedlings of annual ryegrass (Lolium perenne L.) var. Passerel Plus inoculated with Glomus intraradices Schenck & Smith in soil contaminated with sweet Arabian median crude oil. Inoculated (AMF) and non-inoculated (Non-AMF) plants were established in an pasteurized and artificially contaminated sandy loam soil with 0; 3000; 15,000; or 45,000 mg of petroleum kg-1 soil (n = 20). Plants were inoculated with 500 spores of G. intraradices (Mycorise® ASP, PremierTech Biotechnologies, Canada). After 90 days, plant growth of AMF or Non-AMF plants, was drastically affected at all petroleum concentrations. However, G. intraradices enhanced plant growth, chlorophyll content, and gas exchange of plants grown at 3,000 mg kg-1 compared to Non-AMF plants. Total leaf area, chlorophyll, and net photosynthesis were also higher (+380%, +63%, and +81%, respectively) at this concentration. Water use efficiency (net photosynthesis/stomatal conductance) of AMF-plants was three times greater than Non-AMF at 3,000 mg·kg-1. At concentrations of 15,000 and 45,000 mg kg-1 AMF did not have effect, but colonization was observed (11.8% and 18.6%, respectively). These values of colonization were significantly lower than those observed in AMF-plants at 0 (42.5%) and 3,000 mg·kg-1 (55.6%). Studies are currently being conducted to understand the physiological role of AMF on plants exposed to organic contaminants.

Free access

Sustainable horticultural production will increasingly have to rely on economically feasible and environmentally sound solutions to problems associated with high levels of bicarbonate (HCO - 3) and associated high pH in irrigation water. The ability of arbuscular mycorrhizal fungi (AMF; GlomusZAC-19) to enhance plant tolerance to HCO3 - was tested on the growth, physiology and nutrient uptake of Rosamultiflora Thunb. ex J. Murr. cv. Burr (rose). Arbuscular mycorrhizal colonized and noninoculated (non-AMF) plants were treated with 0, 2.5, 5, and 10 mm HCO - 3. Increasing HCO - 3 concentration and associated high pH and electrical conductivity (EC) reduced plant growth, leaf elemental uptake and acid phosphatase activity (ACP), while increasing alkaline phosphatase activity (ALP). Inoculation with AMF enhanced plant tolerance to HCO - 3 as indicated by greater plant growth, leaf elemental uptake (N, P, K, Ca, Fe, Zn, Al, Bo), leaf chlorophyll content, higher mycorrhizal inoculation effect (MIE), lower root iron reductase activity, and generally lower wall-bound ACP (at 2.5 mm HCO3 -), and higher soluble ALP (at 10 mm HCO3 -). While AMF colonization (arbuscules, vesicles, and hyphae formation) was reduced by increasing HCO - 3 concentration, colonization still occurred at high HCO - 3. At 2.5 mm HCO3 -, AMF plant growth was comparable to plants at 0 mm HCO3 -, further indicating the beneficial effect of AMF for alleviation of HCO3 - stress.

Free access