Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Alan W. McKeown x
  • All content x
Clear All Modify Search
Free access

Alan W. McKeown, John W. Potter, Mary Gartshore, and Peter Carson

Root lesion nematodes (Pratylenchus penetrans Cobb) are well-adapted to sandy soils and have a host range including most agronomic, horticultural, and wild species grown in Ontario. As native climax sand-prairie species have coexisted with the nematode for millennia, resistance or tolerance may have developed. We have screened using the Baermann pan technique, soil samples taken from a private collection of sand-prairie species collected from local prairie remnants. Several species [Liatris cylindracea Michx., Monarda punctata L., Pycnanthemum virginianum L., Echinacea purpurea (L.) Moench] proved to be excellent hosts (>500/kg of soil) of root lesion nematode, confirming the presence of this nematode in the soil. Over two seasons, we determined that 10 plant species belonging to the families Asclepiadaceae, Compositae, Graminae, and Leguminosae to support very low numbers of P. penetrans. Brown-eyed susan (Rudbeckia hirta L.) had no root lesion nematodes throughout both seasons, Butterfly weed (Asclepias tuberosa L.) very low counts, while Switch grass (Panicum virgatum L.) and Indian grass [Sorghastrum nutans (L.) Nash] had detectable root lesion nematodes on only one sampling date each year. Big Bluestem (Andropogon gerardii Vitman), Little Bluestem [Schizachyrium scoparium (Michx) Nash], Sand Dropseed [Sporobolus cryptandrus (Torr.) Gray], Side-oats Grama [Bouteloua curtipendula (Michx.)) Torr], Broomsedge (Andropogon virginicus L.), Bush clover [Lespedeza capitata (Michx] also are poor hosts. These species have potential as cover or rotation crops useful for nematode management.

Full access

Sean M. Westerveld, Mary Ruth McDonald, and Alan W. McKeown

The Nutrient Management Act (NMA) established in the province of Ontario in 2002 has prompted a re-evaluation of nitrogen (N) management practices. However, N management research in Ontario is currently outdated. The experiment in this 3-year study was designed to establish the yield response of carrot (Daucus carota) to N fertilization on mineral and organic soils and identify the relative yield effects of preplant and residual soil N. In 2002, N was applied at 0%, 50%, 100%, 150%, and 200% of recommended N application rates in Ontario as ammonium nitrate (organic soil: 60 kg·ha-1 preplant; mineral soil: 110 kg·ha-1 split 66% preplant/33% sidedress). Experimental units were split in half in 2003 and 2004, and N was applied to one half in 2003 and both halves in 2004 to identify the effects of residual N from the previous season on yield. Crop stand, yield, and quality were assessed at harvest, and storability was assessed by placing carrots into cold storage for 6 months. Nitrogen application rate had no effect on the yield, quality, or storability of carrots grown on organic soil. On mineral soil there were no effects of applied N in the first year of the 3-year study. In the second and third year on mineral soil, yield increased in response to increasing N, up to 200% and 91% of the recommended application rate, respectively, based on the regression equations. Yield declined above 91% of the recommended application rate in the third year due to a decrease in stand at higher N application rates. There were no effects of N on carrot quality or storability on mineral soil. On mineral soil, residual N from the 2002 season had more effect on yield at harvest in 2003 than N applied in 2003. This major effect of residual soil N on yield provides an explanation for the lack of yield response to preplant N application in previous studies conducted in temperate regions. These results indicate that there is no single N recommendation that is appropriate for all years on mineral soil. Assessing the availability of N from the soil at different depths at seeding is recommended to determine the need for N application.

Free access

Sean M. Westerveld, Alan W. McKeown, and Mary Ruth McDonald

An understanding of nitrogen (N) uptake and the partitioning of N during the season by the carrot crop (Daucus carota subsp. sativus [Hoffm.] Arkang.) is required to develop more efficient N fertilization practices. Experiments were conducted on both organic and mineral soils to track the accumulation of dry matter (DM) and N over the growing season and to develop an N budget of the crop. Treatments included two carrot cultivars (`Idaho' and `Fontana') and 5 N rates ranging from 0% to 200% of the provincial recommendations in Ontario. Foliage and root samples were collected biweekly from selected treatments during the growing season and assessed for total N concentration. Harvest samples were used to calculate N uptake, N in debris, and net N removal values. Accumulation of DM and N in the roots was low until 50 to 60 days after seeding (DAS) and then increased linearly until harvest for all 3 years regardless of the soil type, cultivar, and N rate. Foliage dry weight and N accumulation were more significant by 50 to 60 DAS, increased linearly between 50 and 100 DAS, and reached a maximum or declined slightly beyond 100 DAS in most cases. The N application rates required to maximize yield on mineral soil resulted in a net loss of N from the system, except when sufficient N was available from the soil to produce optimal yield. On organic soil, a net removal of N occurred at all N application rates in all years. Carrots could be used as an N catch crop to reduce N losses in a vegetable rotation in conditions of high soil residual N, thereby improving the N use efficiency (NUE) of the crop rotation.

Free access

Sean M. Westerveld, Alan W. McKeown, and Mary Ruth McDonald*

Residual nitrogen (N) in agricultural soils is an environmental concern. Nitrogen requirements for carrots were examined over a two-year period in Ontario, Canada. Carrots, cvs. `Idaho' and `Fontana' were seeded into organic and mineral soil in 2002 and 2003 in the same plots. In 2002, N was applied at 0%, 50%, 100%, 150%, and 200% of current Ontario recommendations. Each experimental unit was split in half in 2003 with one half getting the same N rate as in 2002, and the second half getting no applied N. At harvest, total and marketable yield, weight per root, and quality were assessed. Yield and quality were unaffected by N rate in both mineral soil in 2002 and organic soil in both years. On mineral soil in 2003 there was a linear increase in total and marketable yield and weight per root with increasing N rate, with total yield ranging between 36 and 55 t/ha. However, in the treatments given no N in 2003, yield also increased from 36 to 47 t/ha between the 2002 no N and high N treatments. Consequently, a large portion of the increase in yield in 2003 on mineral soil was due to residual N from the previous season. Carrots are capable of taking up very high amounts of N from the soil over a growing season, but may only require additional N for maximum total yield if soil N content is low due to low mineralization rates or depletion by a previous crop. However, low N rates can reduce the ability to harvest the crop due to increased carrot leaf blight severity even when yield is unaffected.

Free access

Sean M. Westerveld, Alan W. McKeown, and Mary Ruth McDonald

Alternaria leaf blight (ALB) and Cercospora leaf spot (CLS) are economically important diseases of carrot in Ontario. Field experiments were conducted in the Holland Marsh, Ontario, to determine the effect of nitrogen (N) application rates on both diseases. Five rates of N were applied to organic and mineral soils in which two carrot cultivars, Idaho and Fontana, were grown in each of 2002, 2003, and 2004. Both diseases were rated every 2 weeks on a scale of 0 (healthy) to 10 (tops destroyed), and the number of live (green) leaves per plant was assessed at harvest. In addition, three N rates were applied to carrot plants grown in the greenhouse, and the plants were inoculated with Alternaria dauci (Kühn) Groves and Skolko. Disease severity, senescence, and sap nitrate-N concentration were assessed. In the field trials, the response of ALB and CLS to N application rate was relatively consistent across cultivar, soil type, and year. Area-under-the-disease-progress curves typically increased with decreasing N rate for both diseases. In lower N treatments, this resulted in fewer live leaves per plant at harvest. In the greenhouse, ALB severity increased with increasing amount of leaf senescence at final assessment. The results suggest that N application rate could be used to reduce the need for fungicide applications to control these diseases in the field.

Free access

Alan W. McKeown, John W. Potter, R.F. Cerkauskas, and L. Van Driel

A long-term experiment in the same site was planted to evaluate potential yield, nematode, and disease problems with tomatoes (Lycopersicon esculentum Mill.) in a strip-till system. Treatments consisted of conventional tillage (CT) and strip tillage (ST), rye (Secale cereale L.), wheat (Triticum aestivum L.), and perennial ryegrass (Lolium perenne L.) cover crops and a 2-year rye–tomato rotation. Results of the first 5 years indicate a decrease in tomato yield over time for both tillage treatments and cover crops. Tomato yields were lower following wheat and perennial ryegrass than rye. Strip-tillage reduced yield compared to conventional tillage in only 1 year out of 6. Yield increased overall for treatments in 1992, with highest yield in the rye–tomato rotation. Bacterial speck/spot symptoms on foliage, although minor, were significantly greater in ST than in CT plots during the last 3 years. No major consistent trends in incidence and severity of bacterial and fungal diseases and of disorders of fruit were evident during the 5-year period, and neither fruit yield nor quality were significantly affected by these factors. Root-knot nematodes (Meloidogyne hapla Chitwood) were numerically less numerous in the rye–tomato rotation than in other treatments; both root-knot and root lesion nematodes [Pratylenchus penetrans (Cobb)] tended to be less numerous under CT than under ST. Tomatoes grown under reduced tillage appear more sensitive to plant parasitic nematodes and preceding cover crops than in conventional tillage.

Free access

Alan W. McKeown*, Mary Ruth McDonald, Cathy J. Bakker, and Kevin Vander Kooi

Chives, (Allium schoenoprasum) consumption and production are increasing in Ontario. Rust (Puccinia allii F. Rudolphi) has been a problem with some chive cultivars for some growers, and in Ontario, basic information on production is nonexistent. The objectives were to identify cultivars with high yields, disease resistance and winter survivability. Plantings of six cultivars of chives were established in 2002 and 2003 in two contrasting environments, on organic (Kettleby) and mineral (Simcoe) soils; and one cultivar of garlic chives (A. tuberosum) at Kettleby. Leaves were harvested to a length of 30 cm, weighed and assessed for visible signs of rust. In Spring 2003, the number of dead plants was recorded to determine the overwinter survivability of each cultivar. Performance varied among cultivars and between locations. In Simcoe, Staro produced the highest yield in 2002 while generic (unnamed) chives produced the highest yield in the second year. In Kettleby, yield was similar among cultivars in 2002 but in 2003 generic chives produced the highest yield. Overwinter survival also varied between locations and second season yields were much higher in Kettleby. Less snow cover and subsequent winter injury is a possible explanation for the lower yields and poorer winter survival in Simcoe. No symptoms of rust were found in either location. Chives are a viable crop in Ontario, and appear to have different adaptability to regional soils and climates.

Free access

Sean M. Westerveld, Alan W. McKeown, Cynthia D. Scott-Dupree, and Mary Ruth McDonald

With the introduction of nutrient management legislation in Ontario, there is a need to improve the efficiency of nitrogen (N) utilization. One possibility is to use critical nutrient concentrations in plant tissue as an indicator of the N nutritional status of the crop. Plant tissue analysis was used to determine the total N and nitrate-N (NO3-N) concentrations of cabbage (Brassica oleracea var. capitata L.), carrots (Daucus carota L.), and onions (Allium cepa L.) grown in Ontario. The tissue samples were collected from plants as part of N fertilization studies from 1999 to 2001 on the organic soils in the Holland/Bradford Marsh area and the mineral soils near Simcoe, Ontario. Yield was assessed at harvest as an indicator of the N requirement of the crop. Testing the usefulness of critical NO3-N concentrations to indicate the N requirement of the crop was problematic because: 1) few published references were available to indicate a critical level of NO3-N in these crops; 2) tissue NO3-N concentrations were highly variable; and 3) field data rarely matched published references. Tissue total N concentrations from the trials corresponded to published critical N concentrations in some cases, however, the use of published critical N concentrations would have resulted in either over or under-application of fertilizer to the crops. Cultivar, soil type, and climate were shown to affect tissue N concentrations. Based on these results it was concluded that local research and field verification is required before tissue N critical nutrient concentrations become useful for determining fertilizer needs of cabbage, carrots, and onions grown in Ontario.

Full access

Sean M. Westerveld, Alan W. McKeown, Mary Ruth McDonald, and Cynthia D. Scott-Dupree

Nutrient management legislation has prompted an evaluation of alternative nitrogen (N) management techniques. SPAD (Soil Plant Analysis Development) chlorophyll and Cardy nitrate (NO3 -) meters were evaluated for their potential as tissue nitrogen tests in cabbage (Brassica oleracea var. capitata), onions (Allium cepa), and carrots (Daucus carota subsp. sativus). Cabbage, carrots, and onions were grown on both organic and mineral soils in Ontario, Canada in 2000 and 2001. Nitrogen was applied at five rates to cabbage and carrots and three rates to onions ranging from 0 to 200% of current provincial recommended N rates. In an additional treatment, 50% of the recommended rate was applied preplant and sidedress N applications of 40 kg·ha-1 (35.7 lb/acre) were applied when SPAD chlorophyll meter readings fell below 95 (2000) and 97% (2001) of the highest N rate treatment. Yields were generally unaffected by N rate, except in cabbage in 2000, suggesting adequate N was present in most treatments. SPAD chlorophyll meter readings were highly variable among soil types, cultivars, and years. Chlorophyll readings reached a plateau in adequately fertilized crops in many instances. Cardy readings were less variable among soil types, cultivars, and years. The relationship between N rate and sap NO3-N concentration was generally linear. The results suggest that the use of a well-fertilized reference plot is most appropriate for the SPAD meter on these vegetable crops, while the use of region-specific critical NO3-N concentrations was most appropriate for the Cardy NO3-meter. Both meters would be cost advantageous when over 500 samples are tested. The meters were generally easy to use, except for the SPAD meter on carrots. The meters have potential for N management of vegetable crops under Ontario growing conditions.