Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Alan S. Windham x
Clear All Modify Search

Three, 2-day hands-on experiential learning workshops were presented in three southeastern United States cities in June 2014, by the Southern Nursery Integrated Pest Management (SNIPM) working group. Attendees were provided 4 hours of instruction including hands-on demonstrations in horticultural management, arthropods, plant diseases, and weeds. Participants completed initial surveys for gains in knowledge, skills, and abilities as well as their intentions to adopt various integrated pest management (IPM) practices after the workshop. After 3 years, participants were again surveyed to determine practice adoption. Respondents changed their IPM practice behavior because of attending the workshops. Those returning the survey set aside more time to scout deliberately for pests, plant diseases, and weeds; used a standardized sampling plan when scouting; and adopted more sanitation practices to prevent plant disease. Fewer horticultural management practices were adopted than respondents originally intended. Future emphasis should be placed on using monitoring techniques to estimate pest emergence, for example, traps and pheromone lures, as well as plant phenology and record keeping. However, more work is needed to highlight both the immediate and long-term economic benefits of IPM practice adoption in southeastern U.S. nursery production.

Full access

The eriophyid mite, Phyllocoptes fructiphilus, vectors the causal agent, Rose rosette virus (RRV), that results in rose rosette disease. Parts of the southeastern United States have remained free of the disease, except for infected plant material introductions that were eradicated. A survey of sampling points through Alabama, Georgia, and Mississippi (n = 204) revealed the southeastern border of RRV. The presence of RRV in symptomatic plant tissue samples (n = 39) was confirmed by TaqMan-quantitative reverse transcription polymerase chain reaction (RT-qPCR). Samples were also collected at every plot for detection of eriophyid mites, specifically for P. fructiphilus. Three different species of eriophyid mites were found to be generally distributed throughout Alabama, Georgia, and Mississippi. Most of these sites (n = 60) contained P. fructiphilus, found further south than previously thought, but in low populations (<10 mites/gram of tissue) south of the RRV line of incidence. Latitude was found to be significantly correlated with the probability of detecting RRV-positive plants, but plant hardiness zones were not. Plot factors such as plant size, wind barriers, and sun exposure were found to have no effect on P. fructiphilus or the presence of RRV. The reason for the absence of RRV and low populations of P. fructiphilus in this southeast region of the United States are unclear.

Open Access