Search Results

You are looking at 1 - 10 of 36 items for

  • Author or Editor: Alan N. Lakso x
Clear All Modify Search
Author:

Fruits of different species grow in different patterns (such as the “double sigmoid” of stone fruits and grapes or the apparent single sigmoid of apples), and each has periods of cell division followed by periods of only cell expansion. It should not be expected that one mathematical growth description would hold for all species, or even at all times of the season for one species. Perhaps hybrid growth models need to be developed, although specific questions asked about fruit growth may be satisfactorily answered with models of only parts of the fruit growth period of interest.

Free access
Author:

Apples have very high record yields (about 140 tons/ha sustained) that demand large amounts of carbon to be produced and partitioned into both fruit and vegetative structures. Even though large quantities of dry matter can be produced, profitability depends on the management of the carbon production and partitioning to produce the optimal balance of yield and fruit quality. The productivity is mostly related to moderate photosynthesis rates per leaf area, long leaf area duration, high seasonal radiation interception, relatively low respiration, and very high harvest index. Due to the perennial nature and large size, few good estimates of seasonal carbon balance are available. Models have been developed, but are not wellvalidated yet, but general seasonal trends are apparent. Daily net CO2 exchange begins negative with early spring growth, reaches zero near bloom, peaks about 6 to 10 weeks after bloom, then gradually declines until leaf fall. The demand of the fruit appears to increase exponentially during cell division, then levels off to a relatively constant demand until harvest. Experiments and modeling suggests that if fruit development is limited by carbon availability, the probability increases in heavily cropping trees, and will occur at about 2 to 4 weeks after bloom and before harvest. Best carbon balance appears to occur in relatively cool temperatures and in very long seasons.

Free access
Author:

Abstract

The relationship between stomatal conductance and leaf water potential in field-grown apple trees (Malus domestica Borkh.) was determined throughout one growing season. Between May and September the leaf water potential required to close stomates decreased (became more negative) by about 25 bars, indicating decreasing sensitivity of the stomates to leaf water stress. A good linear correlation was found between stomatal conductance and net photosynthesis in trees grown under a wide range of water stress conditions. In September net photosynthesis of excised leaves of field trees was not reduced to zero until leaf water potentials reached −50 to −60 bars. The results emphasize the importance of pre-conditioning and time of season in plant water relations studies.

Open Access
Author:

Abstract

Excision of field shoots of apple (Malus domestica Borkh.) and grape (Vitis labruscana Bailey and V. vinifera L.) for subsequent measurements of photosynthesis and transpiration in the laboratory gave variable and sometimes substantial errors, dependent on excision method, species studied and time of season. Water stress due to low water potentials caused obvious problems, but excessive turgor in shoots excised under water also caused significant errors. The method of shoot excision affected the water potential of excised shoots, especially if held for more than 6 hr.

Open Access
Author:

Abstract

Fisheye (hemispherical) photographs were taken in apple (Malus domestica Borkh.) tree canopies of varying types and analyzed for the percentage sky visible in the photograph. Canopy structure was evaluated with photographs along vertical transects, and seasonal development of different canopy forms was followed. Good correlations of the % sky to total and diffuse light, sunfleck penetration, red/far-red ratios, flowering and fruit coloration were found. Results were used to help define the proper balance between light penetration and interception by apple tree canopies, which was estimated as about 20% sky at the bottom of a canopy for ‘McIntosh’.

Open Access

The study evaluated the relationship of spur vs. extension shoot leaf area and light interception to apple (Malus {XtimesX} domesticaBorkh.) orchard productivity. Fifteen-year-old `Marshall McIntosh'/M.9 trees had significantly greater leaf area and percentage of light interception at 3-5 and 10-12 weeks after full bloom (AFB) than did 4-year-old `Jonagold'/Mark trees. Despite significant increases in leaf area and light interception with canopy development, linear relationships between total, spur, and extension shoot canopy leaf area index (LAI) and 1) light interception and 2) fruit yield were similar at both times. Mean total and spur canopy LAI and light interception were significantly and positively correlated with fruit yield; however, extension shoot LAI and light interception were poorly correlated with yield. In another study total, spur and extension shoot canopy light interception varied widely in five apple production systems: 15-year-old central leader `Redchief Delicious' MM.111, 15-year-old central leader `Redchief Delicious' MM.111/M.9, 16-year-old slender spindle `Marshall McIntosh' M.9, 14-year-old `Jerseymac' M.9 on 4-wire trellis, and 17-year-old slender spindle `MacSpur' M.9. Yields in these orchards were curvilinearly related to total and extension shoot canopy light interception and decreased when total light interception exceeded 60% and extension shoot interception exceeded 25%. Fruit yields were linearly and highly correlated (r 2 = 0.78) with spur light interception. The findings support the hypothesis that fruit yields of healthy apple orchards are better correlated with LAI and light interception by spurs than by extension shoots. The results emphasize the importance of open, well-illuminated, spur-rich tree canopies for high productivity.

Free access

Several models of apple tree carbon balance have been developed, including a simplified model by our lab. Tree photosynthesis and total dry matter production is the best characterized except for root growth and root respiration. Once dry matter is produced and partitioned to the different organs (another key problem for modeling), the effects of carbon availability to the fruits on their growth and abscission needs to be modeled. Our approach is based on an observed relationship between increased abscission with decreased fruit growth rate of populations of fruit. From several empirical studies of fruit growth and abscission during chemical thinning or imposed stress early in the season, a relationship was found between % abscission and classes of fruit growth rates. It appears to be best if the fruit growth rate is expressed as a percent of the growth rate of the fastest growing group of fruits in each study. Thus in the model the fruit growth allowed by the available carbon each day is compared to a pre-determined maximum growth rate for the cultivar. The percent-of-maximum growth rate then determines how much abscission will occur. Then the growth rate of the remaining fruit is calculated. Additional parameters of the model allowed for a multiple-day buffer of carbon availability, an imposed fruit number reduction (i.e. equivalent to hand thinning), and temperature effects. Although there are more improvements planned, the initial tests have been promising with the simulations showing realistic patterns of fruit abscission and fruit growth.

Free access
Authors: and

Summer pruning is primarily used in apples to increase the light penetration into inner canopy to improve fruit color. However, summer pruning may reduce fruit size. We hypothesize that removing healthy exterior shoots reduces the whole-tree carbon supply in relation to pruning severity. If the crop load (i.e., demand) is high, fruit size and quality will be reduced. The effects of summer pruning on photosynthetic activity and recovery of shaded leaves after re-exposure were monitored on a range of exposures in canopies of `Empire' apple trees. The photosynthetic ability of leaves was positively related to its prepruning exposure. There was little recovery of photosynthetic activity of shade leaves until late growing season, indicating the re-exposure of shade leaves after summer pruning cannot replace the role of exterior leaves removed by pruning. Whole canopy net CO2 exchange (NCER) was measured on `Empire'/M9 trees with a commercial range of pruning severity. Reductions in NCER were approximately proportional to pruning severity and % leaf area removed and were as great as 60% in the most severe pruning. Canopy light interception decreased slightly. The effects on canopy NCER thus appeared to be primarily related to reduced photosynthetic efficiency and secondarily to reduced light interception.

Free access

Bases of orchard productivity were evaluated in four 10-year-old apple orchard systems (`Empire' and `Redchief Delicious' Malus domestics Borkh. on slender spindle/M.9, Y-trellis/M.26, central leader/M.9/MM.111, and central leader/M.7a). Trunk cross-sectional areas (TCA), canopy dimension and volume, and light interception were measured. Canopy dimension and canopy volume were found to be relatively poor estimators of orchard light interception or yield, especially for the restricted canopy of the Y-trellis. TCA was correlated to both percentage of photosynthetically active radiation (PAR) intercepted and yields. Total light interception during the 7th to the 10th years showed the best correlation with yields of the different systems and explained most of the yield variations among systems. Average light interception was highest with the Y-trellis/M.26 system of both cultivars and approached 70% of available PAR with `Empire'. The higher light interception of this system was the result of canopy architecture that allowed the tree canopy to grow over the tractor alleys. The central leader/M.7a had the lowest light interception with both cultivars. The efficiency of converting light energy into fruit (conversion efficiency = fruit yield/light intercepted) was significantly higher for the Y-trellis/M.26 system than for the slender spindle/M.9 or central leader/M.9/MM.111 systems. The central leader/M.7a system bad the lowest conversion efficiency. An index of partitioning was calculated as the kilograms of fruit per square centimeter increase in TCA. The slender spindle/M.9 system had significantly higher partitioning index than the Y-trellis/M.26 or central leader/M.9/MM.111. The central leader/M.7a system had the lowest partitioning index. The higher conversion efficiency of the Y/M.26 system was not due to increased partitioning to the fruit; however, the basis for the greater efficiency is unknown. The poor conversion efficiency of the central leader/M.7a was mostly due to low partitioning to the fruit. The Y-trellis/M.26 system was found to be the most efficient in both intercepting PAR and converting that energy into fruit.

Free access